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1 The scattering amplitude for vector meson production
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Figure 1: Interaction scheme of the vector meson production

The amplitude for production of a vector meson V is given by [1, 2, 3]

Aγ∗p→V p
T,L (xBj , Q,∆) = i

∫

d2r

1
∫

0

dz

4π

∫

d2bΨ∗
MΨγ∗

∣

∣

∣

T,L
e−i(~b−(1−z)~r )∆dσqq̄

d2b
, (1)

where Ψ∗
MΨγ∗ |T,L is an overlap of a virtual photon and vector meson wave function, ∆ =

√
−t denotes the

transverse momentum lost by the outgoing proton, ~r is the transverse dipole size, ~b is the impact parameter
of the dipole(transverse distance from the center of the proton to the center of mass of the dipole) and z is
a part of photon momenta carried by one of the quarks from the dipole,MV is the mass of the vector meson,
Q is the scale of the incoming photon, W is the energy of a photon and a hadron and Bjorken-x of produced
meson is

xBj =
Q2 +M2

V

W 2 +Q2
. (2)

The elastic diffractive differential cross-section can be written as

dσγ
∗p→V p

T,L

d|t| =
1

16π

∣

∣

∣Aγ∗p→V p
T,L

∣

∣

∣

2
(3)
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2 The wave function

The overlap of a virtual photon and vector meson wave function is defined as
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∣
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. (4)

where h and h̄ denote helicities of quarks and antiquark and λ is a polarization of incoming photon.

The photon wave function was calculated in perturbative QED[4, 5] from a γ → f f̄ vertex.

Ψhh̄λ=0

∣

∣

∣

γ∗

(r, z,Q) = ef δff̄e
√

Ncδh,−h̄2Qz(1 − z)
K0(ǫr)

2π
(5)

Ψhh̄λ=±1

∣

∣

∣

γ∗

(r, z,Q) = ±efδff̄e
√

2Nc

(

ie±iθr
(

zδh,±1δh̄,∓1 − (1− z)δh,∓1δh̄,±1

)

∂r +mf δh,±1δh̄,±1

) K0(ǫr)

2π
,

where e =
√
4παem, h, θr is the azimuthal angle between the vector ~r and the x-axis in the transverse plane,

ǫ2 = z(1− z)Q2 +m2
f , Nc = 3 is the number of colors, efδff̄ and mf are the fractional charge and effective

mass of the quark respectively. The partial derivative of the modified Bessel function K0 with respect to r
can be done using the equation ∂rK0(ǫr) = −ǫK1(ǫr).

The vector meson wave function is modelled with the presumption that vector meson is predominantly
a quark-antiquark state and the spin and polarization structure is the same as in the photon case [1]

Ψhh̄λ=0

∣

∣

∣

V
(r, z,Q) =

√

Ncδh,−h̄

(

MV + δ
m2

f −∇2
r

MV z(1− z)

)

ΦL(r, z) (6)
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∣

∣
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√
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1
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)

ΦT (r, z),

where ∇2
r =

1
r∂r+∂

2
r and δ is a switch enables to include the non-local part of the wave function introduced

in [6, 7].

The overlap between photon and vector meson wave function is

Ψ∗
V Ψγ∗

∣
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∣

T
= ef δff̄e
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m2
fK0(ǫr)ΦT (r, z) − (z2 + (1− z)2)ǫK1(ǫr)∂rΦT (r, z)

)

Ψ∗
V Ψγ∗

∣

∣

∣

L
= ef δff̄e

Nc

π
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(
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m2
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r

MV z(1− z)
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)

, (7)

where efδff̄ is an effective charge that corresponds to the choice of the vector meson. It can be calculated
for arbitrary meson from it’s quark wave function by substituting charge for each quark-antiquark pair, e.g.

ρ =
uū− dd̄√

2
⇒ eρδff̄ =

2
3 − (−1

3)√
2

=
1√
2

J/Ψ = cc̄⇒ eJ/Ψδff̄ =
2

3
. (8)
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The scalar part ΦT,L of the vector meson wave function is model dependent. In the photon case the scalar
part is given by modified Bessel functions (kind of a point object), whereas for the vector mesons the hadron
at rest is more complicated object (kind of a sphere).

2.1 Gaussian models

These types of parametrization assume that transverse part of the vector meson in the rest frame can be
approximated by a Gaussian in the transverse plane. It needs to specify two parameters - a width of a
Gaussian R and a normalization of the scalar part N .

Normalization condition for the vector meson wave function comes from the fact, that the vector meson is
composed solely of the quark-antiquark pair from the dipole. Therefore, no contribution from gluons and
sea quarks is considered and

1 =
∑

h,h̄

∫

d2r

1
∫

0

dz

4π
|ΨV

hh̄λ(r, z,Q)|2 (9)

This can be transformed into the normalization of the scalar parts [1]

1 =
Nc

2π

1
∫

0

dz

z2(1− z)2

∫

d2r
(

m2
fΦ

2
T (r, z) + (z2 + (1− z)2)(∂rΦT (r, z))

2
)

1 =
Nc

2π

1
∫

0

dz

∫

d2r

(

MV ΦL(r, z) + δ
m2

f −∇2
r

MV z(1− z)
ΦL(r, z)

)2

. (10)

Another constraint on the vector meson wave functions is obtained from the decay width. It is assumed
that the perturbative decay width of q̄q → γ∗ → l+l− is factorized from the vector meson wave function.
The electromagnetic current is then

fV,T = ef
Nc

2πMV

1
∫

0

dz

z2(1− z)2
(

m2
f − (z2 + (1− z)2)∇2

r

)

ΦT (r = 0, z)

fV,L = ef
Nc

π

1
∫

0

dz

(

MV + δ
m2

f −∇2
r

MV z(1 − z)

)

ΦL(r = 0, z). (11)

The coupling of the electromagnetic current to the vector meson is obtained from the measured electronic
decay width as

ΓM→e+e− =
4πα2

emf
2
V

3MV
, (12)

where the value of fV comes from the measurement. It is presumed that fV = fV,L = fV,T , however, some
models predict different values of fV,T and fV,L. In this case, the longitudinal part is preferably set to be
equal to measured value [1].
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Meson ΓM [keV ] fV [GeV ]

J/Ψ 5.547 0.2775
Ψ(2S) 2.351 0.1971
ρ 6.9762 0.1557

Υ(1S) 1.2857 0.2335
Υ(2S) 0.6108 0.16567

Table 1: Table of electromagnetic currents and decay widths of various vector mesons [8]

For excited states, one additional parameter means that we need one additional normalization conditions.
It is, therefore, anticipated that 1S and 2S wave functions are orthogonal

0 =
Nc

2π

1
∫

0

dz

z2(1− z)2

∫

d2r
(

m2
fΦ

1S
T (r, z)Φ2S

T (r, z) + (z2 + (1− z)2)∂rΦ
1S
T (r, z)∂rΦ

2S
T (r, z)

)

. (13)

2.1.1 DGKP or Gauss-LC model

The Gauss-LC model [4] assumes that the longitudinal momentum fraction z fluctuates independently of
the quark transverse momentum ~k (conjugate variable to ~r). This model assumes δ = 0.

ΦT (r, z) = NT (z(1 − z))2e
− r2

2R2
T

ΦL(r, z) = NLz(1 − z)e
− r2

2R2
L (14)

Meson êf MV [GeV ] mf [GeV ] NT R2
T [GeV

−2] NL R2
L[GeV

−2]

J/Ψ 2/3 3.097 1.4 1.23 6.5 0.83 3.0

ρ 1/
√
2 0.776 0.14 4.47 21.9 1.79 10.4

Υ(1S) 1/3 9.46 4.2 0.78 1.91 0.78 1.91

Table 2: Vector meson wave function parameters for the Gauss-LC static part from [1, 9]
.
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Figure 2: Scalar part of the J/Ψ and Ψ(2S) wave function. Compare to [2].
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2.1.2 Boosted Gaussian model

The boosted Gaussian model [6, 7, 10, 11] assumes that the fluctuation of the quark three-momentum ~p
in the rest frame of the meson can be written in a boost-invariant form p2 = (k2 +m2

f )/(4z(1 − z)) −m2
f .

Therefore, supplying a scalar spatial part in the rest frame allows to boost it to proper frame. This model
has proper short distance limit and assumes δ = 1. If we use the Gaussian form of the rest frame meson
wave function (quadratic potential in Schrodinger equation) we get

ΦT,L(r, z) = NT,Lz(1− z)e
−

m2
fR2

8z(1−z)
−

2z(1−z)r2

R2 +
m2

fR2

2 (15)

Meson êf MV [GeV ] mf [GeV ] NT NL R2[GeV −2]

J/Ψ 2/3 3.097 1.4 0.578 0.575 2.3

ρ 1/
√
2 0.776 0.14 0.911 0.853 12.9

Υ(1S) 1/3 9.46 4.2 0.481 0.480 0.57

Table 3: Table of vector meson wave function parameters for the boosted Gaussian static part from [1, 12]

For the first excited state 2S, the scalar wave function has the form

ΦT,L(r, z) = NT,Lz(1− z)e
−

m2
fR2

8z(1−z)
−

2z(1−z)r2

R2 +
m2

fR2

2 ×
(

1 + α2S

(

2 +
m2

fR
2

4z(1− z)
− 4z(1 − z)r2

R2
−m2

fR
2

))

(16)

Meson êf MV [GeV ] mf [GeV ] NT NL R2[GeV −2] α2S [1]

Ψ(2S) 2/3 3.686 1.4 0.67 0.67 3.72 −0.61
Υ(2S) 1/3 10.023 4.2 0.624 0.624 0.831 −0.555

Table 4: Table of vector meson wave function parameters for the boosted Gaussian static part from [2, 13]
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Figure 3: Overlap of photon-J/Ψ and photon-Ψ(2S) wave functions for three values of Q2. Compare to [1].
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2.2 non-Gaussian model

The boosted non-Gaussian model (also called NNPZ) [6, 7, 11, 14] assumes as in Gaussian version that
the fluctuation of the quark three-momentum ~p in the rest frame of the meson can be written in a boost-
invariant form. But rather than guessing the rest frame form of a wave function, it supplies the solution
of the Schrodinger equation for realistic potential. The spatial part of the qq̄ wave function satisfies the
Schrodinger equation [14]

(

−∆

2µ
+ V (r)

)

Ψnlm(~r) = EnlΨnlm(~r), (17)

µ =
mqmq̄

mq +mq̄
=
mq

2
, (18)

where µ is the reduced mass of the qq̄ pair and

∆ =
3
∑

i=1

∂2

∂x2i
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
. (19)

If we use the standard factorized form of the wave function to radial and angular part

Ψnlm(~r) = ψnl(r)× Ylm(θ, ϕ) (20)

the Schrodinger equation can be separated to two equations

∂

∂r

(

r2
∂ψ(r)

∂r

)

+mq(E − V (r))r2ψ(r) = l(l + 1)ψ(r)

1

sin θ

∂

∂θ

(

sin θ
∂Y (θ, ϕ)

∂θ

)

+
1

sin2 θ

∂2Y (θ, ϕ)

∂ϕ2
= −l(l + 1)Y (θ, ϕ) (21)

with l = 0 for 1S,2S states and l = 1 for 1P,2P etc. If there is no spin rotation, the solution of angular
equation provides constant factor, that is absorbed into the normalization. For the solution of the radial
equation, the potentials from Section 2.2.1 were used
Now, we can use the formula

1

r2
∂

∂r

(

r2
∂ψ(r)

∂r

)

=
1

r

∂2

∂r2
(rψ(r)) (22)

to rewrite the radial Schrodinger equation to

1

r

∂2

∂r2
(rψ(r)) +mq(E − V (r))ψ(r) =

l(l + 1)

r2
ψ(r). (23)

If we use a substitution u(r) = rψ(r) we have

∂2u(r)

∂r2
+mq(E − V (r))u(r) =

l(l + 1)

r2
u(r). (24)

This can be written in the final form

∂2u(r)

∂r2
= (Veff (r)− ǫ)u(r) Veff (r) = mqV (r) +

l(l + 1)

r2
ǫ = mqE. (25)
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Figure 4: Normalized reduced and non-reduced solution of the Schrodinger equation. Compare [14] Fig. 4.

This equation can be solved using e.g. Runge-Kutta method with initial conditions[15] r = rmin, u(rmin) =
rl+1
min, u

′(rmin) = (l+1)rlmin or Numerov method with initial conditions r = rmin, u(rmin) = rl+1
min, u(rmin+1) =

rl+1
min+1. Both methods lead to almost the same results, so we used the latter one, since it is faster. The
normalization of the solution is that the following relation holds

+∞
∫

0

|u(r)|2dr = 1 (26)

and so, u(r) has a dimension GeV
1
2 and ψnl(r) has a dimension GeV

3
2 . The solution can be tested by cal-

culating overall normalization and mean values of the distribution. Results for these values are summarized
in the following table

J/Ψ ǫ[GeV 2]
∫

|u|2dr[1] < 1/r > [GeV ] < 1/r2 > [GeV 2] < r2 > [GeV −2]

Cornell 0.4738 0.6936 0.8085 1.171 3.6345
Harmonic 0.891 2.738 0.6149 0.5936 5.051

Logarithmic 0.1008 1.257 0.7235 0.893 4.364
Buchmuller-Tye 0.185 1.2286 0.707 0.866 4.58

Table 5: Table of testing parameters for the solution of the Schrodinger equation for J/Ψ.

Ψ(2S) ǫ[GeV 2]
∫

|u|2dr[1] < 1/r > [GeV ] < 1/r2 > [GeV 2] < r2 > [GeV −2]

Cornell 1.560 1.088 0.4628 0.619 14.84
Harmonic 2.079 1.825 0.5124 0.593 11.78

Logarithmic 0.985 2.432 0.3721 0.386 20.76
Buchmuller-Tye 1.077 1.896 0.4069 0.458 18.50

Table 6: Table of testing parameters for the solution of the Schrodinger equation for Ψ(2S).

Since the solution of the Schrodinger equation u(r) is normalized the actual wave function ψ(r) is then
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normalized as follows

ψ(r) =
u(r)

r
[GeV

3
2 ]

+∞
∫

0

|u(r)|2dr = 1 ⇒
∫

|ψ(r)|2d3r = 4π. (27)

In order to obtain normalized wave function, we have to re-normalize it according to previous formula with

ψ(r) =
1√
4π
ψ(r). (28)

This normalized solution has to be now Fourier transformed (notation according to [16]) to momentum
space using following definition of Fourier transformation

ψ(y) =
1

(2π)
n
2

∫

ei~x~yψ(x)dnx ψ(x) =
1

(2π)
n
2

∫

e−i~x~yψ(y)dny (29)

yielding

ψ(p) =
1

(2π)
3
2

∫

d3r ei~p~rψ(r) =
1

(2π)
3
2

+∞
∫

0

r2drψ(r)

2π
∫

0

dφ

π
∫

0

dθeipr cos θ sin θ. (30)

We can use the integral definition of the Bessel function

J 1
2
(t) =

√
t√
2π

π
∫

0

eit cos θ sin θdθ =

√

2

πt
sin(t) (31)

to write

ψ(p) =
2π

(2π)
3
2

+∞
∫

0

r2drψ(r)J 1
2
(pr)

√
2π√
pr

(32)

and, consequently,

ψ(p) =
2√
2πp

+∞
∫

0

rdrψ(r) sin(pr) [GeV− 3
2 ]. (33)

The normalization is such that the integral in the Fourier transformation has to leave the normalization
intact and following the fact that we started with the wave function normalized to 1 we have (see [17])

∫

|ψ(p)|2d3p = 1. (34)

Now, the wave function in momentum space has to be boosted to proper frame. The procedure used in [14]
was adapted. Note, that it differs from the one in [16] by a factor 1

2 in the definition of unit phase space.
We use the fact that invariant mass of the quark pair is the same in all frames and we can write it in terms
of light-cone variables ([6, 14, 16]) as

Mqq̄ = (pq + pq̄)
2 =

p2T +m2
q

z(1− z)
(35)
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Figure 5: Fourier transformed wave function.

J/Ψ
∫

|ψ|2d3p[1] < 1/p > [GeV −1] < 1/p2 > [GeV −2] < p2 > [GeV 2]

Cornell 0.9999 1.825 5.409 0.673
Harmonic 0.9999 2.070 6.706 0.445

Logarithmic 0.9999 2.004 6.529 0.5497
Buchmuller-Tye 0.9999 2.044 6.757 0.523

Table 7: Table of testing parameters for the Fourier transform for J/Ψ.

Ψ(2S)
∫

|ψ|2d3p[1] < 1/p > [GeV −1] < 1/p2 > [GeV −2] < p2 > [GeV 2]

Cornell 0.9999 2.393 11.762 0.815
Harmonic 0.9999 1.725 6.692 1.039

Logarithmic 0.9999 2.931 16.98 0.560
Buchmuller-Tye 0.9999 2.646 14.333 0.647

Table 8: Table of testing parameters for the Fourier transform for Ψ(2S).
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assuming quarks are on shell and the same can be done in the rest frame of the quark pair as

Mqq̄ = (pq + pq̄)
2 = (2E)2 = 4(p2 +m2

q) (36)

since ~pq = −~pq̄. And so, following relations hold

4(p2 +m2
q) =

p2T +m2
q

z(1− z)
p2 =

p2T + (1− 2z)2m2
q

4z(1 − z)
p2L =

(p2T +m2
q)(1− 2z)2

4z(1 − z)
. (37)

The identification between wave functions in both frames is done using probability conservation per unit
phase space

d3p|ψ(p)|2 = d2pTdz|ψ(pT , z)|2. (38)

We need to express d3p in terms of light-cone variables. This can be done using

d3p = dpLd
2pT , (39)

where

dpL =

√

p2T +m2
q

4
√

(z(1 − z))3
dz (40)

and from the correspondence equation we have

√

p2T +m2
q

4
√

(z(1 − z))3
dzd2pT |ψ(p)|2 = d2pTdz|ψ(pT , z)|2 (41)

and we can write the formula for the boosted wave function in (z, ~pT ) space as

ψ(pT , z) = ψ



p =

√

p2T + (1− 2z)2m2
q

4z(1 − z)





(

p2T +m2
q

16(z(1 − z))3

)
1
4

[GeV−1] (42)

or

ψ(pT , z) = ψ



p =

√

p2T + (1− 2z)2m2
q

4z(1 − z)





√
2

(

(p2 +m2
q)

3
4

(p2T +m2
q)

1
2

)

[GeV−1]. (43)

Following previous definition of the normalization and the Fourier transformation, this wave function has
to be normalized according to

1 =

∫

|ψ(p)|2d3p =
∫

|ψ(pT , z)|2d2pTdz =
∫

|ψ(pT , z)|22πpTdpTdz. (44)

Cornell Harmonic Logarithmic Power law Buchmuller-Tye

J/Ψ 1.0001 1.0000 1.0001 1.0001
Ψ(2S) 0.9998 0.9996 0.9997 0.9998 0.9997

Table 9: Table of normalizations of boosted wave functions in (pT , z) space according to previous formula.
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Figure 6: Boosted Fourier transformed wave function for fixed values of z.

Note, that the correspondence (38) in [16] has additional factor 1
2 .

The final form of the wave function is done by transforming the wave function from (pT , z) space to (r, z)
space using 2D Fourier transformation

ψ(r, z) =

∫

d2pT
2π

e−i~pT ~rψ(pT , z) =

+∞
∫

0

pTdpT
2π

ψ(pT , z)

2π
∫

0

dθe−ipr cos θ =

+∞
∫

0

pTdpTψ(pT , z)J0(pT r). (45)

The resulting wave function is then in GeV.
Following previous definitions of the normalization and the Fourier transformation, this wave function has
to be normalized according to

1 =

∫

|ψ(pT , z)|2d2pTdz =
∫

|ψ(r, z)|2d2rdz = 2π

∫

|ψ(r, z)|2rdrdz. (46)

Cornell Harmonic Logarithmic Power law Buchmuller-Tye

J/Ψ 1.0001 1.0000 1.0001 1.0001
Ψ(2S) 0.9997 0.9996 0.9996 0.9997 0.9968

Table 10: Table of normalizations of backward Fourier transformed boosted wave functions in (r, z) space
according to previous formula.
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Figure 7: Backward Fourier transformed boosted wave function for fixed values of z. Compare [14] Fig. 5.
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2.2.1 Quarkonia potentials

In order to calculate the radial part of the wave function of vector mesons, one needs to specify a potential
between these two quarks. This potential is used for the solution of the Schrodinger equation in the rest
frame of the pair.

Harmonic oscillator potential

Most common choice of the potential leads to the gaussian shape of the wave function. It is used in Gaussian
models.

V (r) =
1

2
mqω

2r2, (47)

where

ω =
1

2
(M2S −M1S) (48)

which is 0.3GeV for J/Ψ and 0.28GeV for Υ. The mass of the quark is takenmc = 1.4 GeV andmb = 4.2GeV.
Schrodinger equation with this potential has analytic solution in the form

u(r) = e−
1
4
mqωr2 (49)

and mean square of the radius is < r2 >= 2
mqω

.

Cornell potential

The Cornell potential was published in [18, 19] and also used in [16, 14]

V (r) = −k
r
+

r

a2
k = 0.52 a = 2.34GeV−1 (50)

with mc = 1.84 GeV and mb = 5.17 GeV.

Logarithmic potential

This potential is taken from [14] and it is motivated by potential in [20].

V (r) = −0.6635GeV + (0.733GeV) log(r.1GeV) (51)

with mc = 1.5GeV and mb = 5 GeV.

Power law potential

This potential is taken from [14] and it is motivated by potential in [21].

V (r) = −8.064GeV + (6.898GeV)(r.1GeV)0.1 (52)

with mc = 1.8GeV.

Buchmuller-Tye potential

This potential has a Coulomb like behaviour for small r and string-like behaiour at large r. It has similar
structure like Cornell potential, but there are some corrections to the small r part. For details see [22]. This
potential uses mc = 1.48GeV and mb = 4.87GeV.

V (r) =
k

r
− 8π

27

v(λr)

r
r ≥ 0.01fm (53)
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V (r) = −16π

25

1

r ln
(

1
λ2
MSr

2

)



1 + 2

(

γE +
53

75

)

1

ln
(

1
λ2
MSr

2

) − 462

625

ln
(

ln
(

1
λ2
MSr

2

))

ln
(

1
λ2
MSr

2

)



 r < 0.01fm

ΛMS = 0.509GeV k = 0.153GeV2 λ = 0.406GeV γE = 0.5772 (54)

and the function v(x) is interpolated from the table published in [22]

x 0 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

v(x) 0 0.249 0.3 0.339 0.37 0.397 0.499 0.624 0.707 0.766 0.811 0.845 0.872

x 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

v(x) 0.893 0.911 0.925 0.936 0.946 0.953 0.96 0.965 0.97 0.974 0.977 0.98 0.982

Table 11: Table of values of the function v(x).

According to [22] the mean square of the radius has following values

< r2J/Ψ >= 0.1764 < r2Ψ(2S) >= 0.7225 < r2Υ >= 0.0529 < r2Υ(2S) >= 0.25 (55)
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Figure 8: Left: Various potentials used for the calculation. Compare to Fig. 3 of [14]. Right: Effective
potentials Veff for L = 0 and c-quark.
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3 The dipole cross-section

In general, the dipole cross-section σqq̄ depends on the transverse separation of the dipole ~r, on Bjorken

variable x and on the impact parameter ~b of the dipole in the rest frame of the target. The dipole cross-
section behave like ∼ r2 at small separations r → 0. However, at large separations the dipole cross-section is
presumed to be saturated in order to suppress contributions from very large dipoles(black disc limit). The
differential dipole cross-section can be expressed via optical theorem as

dσqq̄
d2b

= 2N(x, r, b). (56)

So, either we do provide a parametrization of this N (which is very complicated to do) or we try to reduce the
complexity by using some ad-hoc factorization. Since most of the dipole cross-sections are independent of
impact parameter b, one has to modify the formula for the scattering amplitude. Let’s assume the transverse
distribution of the gluonic density in the proton is Tp, then one can write

dσqq̄
d2b

= 2N(x, r, b) = σ0N(x, r)Tp(b) (57)

so that one can integrate over impact parameter to have

σqq̄(x, r) =

∫

d2bσ0N(x, r)Tp(b) = σ0N(x, r), (58)

The simplest form of the gluon profile function is a step function

Tp(b) =
1

πb2s
Θ(bs − b) ⇒

∫

d2bTp(b) = 1, (59)

where the parameter bs = 4 GeV−1[1] is a parameter fixed by the average square transverse radius of the

proton 〈b2〉 = b2s
2 . Other possible profile function is a Gauss distribution

Tp(b) =
1

2πB
e−

b2

2B ⇒
∫

d2bTp(b) = 1 (60)

where the parameter B is taken from the fit to experimental data. The value B = 5.59 GeV−2 is discussed
in [23].
Other version of the transverse profile of the proton can be formulated from pion exchange model. It is
based on the idea that proton has a hard core given by steep gaussian surrounded by soft pion cloud given
by broad gaussian. Both gaussians are centered in the middle of the proton

Tp(b) =
1

4πBh
e
− b2

2Bh +
1

4πBs
e−

b2

2Bs ⇒
∫

d2bTp(b) = 1 (61)

The values of hard and soft width Bh and Bs has to be fitted to data. Our initial choice was Bh = 0.25GeV−2

and Bs = 5.25GeV−2.
Also, one can construct the proton profile function from individual gluons of gluonic clusters (hot spots).
We take gaussian hot spots with fixed size Bhs = 0.8GeV−2 and put them at a position ~bi generated from
a gaussian distribution corresponding to a proton with the width Bp = 4.7GeV−2. The final formula reads
[24]

Tp(b) =
1

Nhs

Nhs
∑

i=1

Tg(~b−~bi) Tg(b) =
1

2πBhs
e
− b2

2Bhs ⇒
∫

d2bTp(b) = 1, (62)
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Figure 9: Shapes of the transverse profile of the proton using verious models. Right figure shows a profile
generated from hot spots. Since the formula for scattering amplitude no longer depends on the magnitude
of the impact parameter, we have to use 2D distribution in contrast to standard profile functions. Details
see [24].

where the number of hot spots is an unknown functional parameter of the model. We took a formula very
loosely motivated by PDF’s [24]

Nhs(x) = 0.011x−0.58(1 + 250
√
x), (63)

where we presume that the number of hot spots will rise with decreasing Bjorken-x.

3.1 Balitsky-Kovchegov evolution equation

The BK equation describes the evolution in rapidity Y of the scattering amplitude N(r, Y ) for the scattering
of a colour dipole of transverse size r with a target. During the evolution the dipole may split into two dipoles
or two dipoles may recombine into one. This formulation is based on the work of [25, 26, 27] and study
the equation without impact parameter dependance. The running coupling Balitsky–Kovchegov equation
[28, 29] is

∂N(r, Y )

∂Y
=

∫

d~r1K(~r,~r1, ~r2)

(

N(r1, Y ) +N(r2, Y )−N(r, Y )−N(r1, Y )N(r2, Y )

)

(64)

where ~r2 = ~r− ~r1; r = |~r| and similarly for r1 and r2. The kernel corresponding to the fixed coupling [26] is

K(~r,~r1, ~r2) =
αsNC

2π2
r2

r21r
2
2

, (65)

with αs fixed to some scale. The kernel incorporating the running of the coupling [27] is given by

K(~r,~r1, ~r2) =
αs(r

2)NC

2π2

(

r2

r21r
2
2

+
1

r21

(

αs(r
2
1)

αs(r
2
2)

− 1

)

+
1

r22

(

αs(r
2
2)

αs(r
2
1)

− 1

)

)

, (66)
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with

αs(r
2) =

4π

(11 − 2
3Nf ) ln

(

4C2

r2Λ2
QCD

) (67)

where Nf is the number of active flavours and C is a parameter to be fixed by comparing to data. Usually,
one is forced to cut the growth of the coupling constant, not allowing αs(r

2) to exceed some fixed value in
the range 0.5-1. There are two approaches to set the ΛQCD. In fixed number of flavours scheme, the value
is set to ΛQCD = 0.241MeV. In variable number of flavours scheme, each flavour has its ΛQCD calculated
from recurrent relation

ΛNf−1 = m
1−

βNf
βNf−1

f Λ

βNf
βNf−1

Nf
, (68)

where βNf
= (11Nc − 2Nf )/3 and mf is the mass of the quark of flavour f . As a starting point one can

take measured αs(r
2 = 4C2/M2

Z) = 0.1189 for nf = 5 at a scale of Z boson mass MZ = 91.187GeV. This
leads to the formula

Λ5 =MZe
− 2π

αs(r2=4C2/M2
Z
)β5 . (69)

For variable scheme, if r2 < 4C2/m2
b , one has to use the value of Λ5 in the formula for αs(r

2). If 4C2/m2
b <

r2 < 4C2/m2
c , one has to use the value of Λ4 in the formula for αs(r

2) and, finally, if 4C2/m2
c < r2, one has

to use the value of Λ3 in the formula for αs(r
2), since mass of light quarks are usually taken to be the same.

The collinearly improved kernel [30] is given by

K(~r,~r1, ~r2) =
ᾱsNC

2π2

(

r2

r21r
2
2

(

r2

min(r21, r
2
2)

)±ᾱsA1 J1(2
√

ᾱs| ln(r21/r2) ln(r22/r2)|)
√

ᾱs| ln(r21/r2) ln(r22/r2)|

)

, (70)

with A1 = 11/12, the positive sign refers to the situation where r < min(r1, r2) and ᾱs = αs(min(r2, r21 , r
2
2))

Nc
π .

The rcBK equation can be solved numerically using Runge–Kutta (RK) methods in parallel over a grid in
r.

3.1.1 MV initial conditions

For the initial form of the dipole scattering amplitude the McLerran-Venugopalan model [31] can be used:

N(r, Y = 0) = 1− exp

(

−
(

r2Q2
s0

)γ

4
ln

(

1

rΛQCD
+ e

)

)

(71)

with the values of the parameters Q2
s0, C and γ taken from fit (e) in Table 1 of [27]. Note that in the fit

the initial rapidity, Y = 0, is at x0 = 0.01, where the relation between Y and x is Y = ln(x0/x). Within
this prescription rapidity Y = 7 corresponds to x ≈ 10−5; that is, to the smallest x measured at HERA for
perturbative scales. The fit using muds = 0.14GeV, mc = 1.27GeV and mb = 4.18GeV yielded the following
values for the parameters: σ0 = 32.895mb, Q2

s0 = 0.165 GeV2, γ = 1.135 and C = 2.52. The fit was
performed under the assumption that αs(r

2) freezes for values of r larger than r0 defined by αs(r
2
0) = 0.7.

Fixed number of flavour scheme is usually used fixing ΛQCD to 241 MeV and Nf = 3. A collinear version
of MV initial conditions was published in [30]

N(r, Y = 0) =

[

1− exp

(

−
[

r2Q2
s0

4
ᾱs(r

2)

(

1 + ln

(

αsat

ᾱs(r2)

))]p)]1/p

, (72)
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where ᾱsat = Nc
π αsat, ᾱs(r

2) = Nc
π αs(r

2) and αsat is fixed to 1. Parameters were fitted with muds =
0.1GeV, mc = 1.3GeV and mb = 4.5GeV. The set from [30] Table 1 row 3 is taken with σ0 = 31, 4055mb,
Q2

s0 = 0.4GeV2, C = 2.586 and p = 0.807. Variable number of flavours scheme has been used leading to
Λb = 88MeV,Λc = 120MeV and Λuds = 144MeV.

3.2 GBW

One of parametrizations is provided by the saturation model of Golec-Biernat and Wüsthöff (GBW)[32, 33]

σqq̄(x, r) = σ0

(

1− e−
r2Q2

s(x)

4

)

Q2
s(x) = Q2

0

(x0
x

)λ
GeV2 (73)

Q2
0 = 1GeV2 σ0 = 23.03mb x0 = 0.0003 λ = 0.288 (74)

This dipole cross-section vanishes like r2 at small distances, whereas it levels of at large distances exponen-
tially. The saturation scale Q2

s is related to the gluon density in the transverse plane and the exponent λ
determines the growth of the total and diffractive cross-sections with decreasing x. For dipole sizes larger
than 1/Qs the dipole cross-sections saturates at the level of σ0. This parametrization comes from global fit
to HERA data using three flavours with mf = 0.14GeV.
More recent set of parameters was published by Kowalski-Motyka and Watt [1] Table 5.

Q2
0 = 1GeV2 σ0 = 23.9mb x0 = 0.000111 λ = 0.287 (75)

which includes also charm quark contribution with mc = 1.4GeV into the fit to HERA data in the range
0.25GeV2 ≤ Q2 ≤ 45GeV2. Note, that GBW parametrization accounts for one Pomeron exchange. As a
consequence, the parametrization is accurate at high energies corresponding to x ≤ 0.01. In addition to
Pomeron part, Reggeon part can be added (and consequently add an interaction with valence quarks in the
target). Nevertheless, the extraction of Reggeon part from data is not as accurate as Pomeron part, and so,
the improvement of the prediction power is disputable[34].

3.3 KST

Another parametrization was published by Kopeliovich, Schäfer and Tarasov (KST)[35]

σNqq̄(sq, r) = σ0(sq)

(

1− e
− r2

r20(sq)

)

(76)

σ0(sq) = σπptot(sq)

(

1 +
3r20(sq)

8〈r2ch〉π

)

(77)

r0(sq) = 0.88

(

sq
s0

)−0.14

fm s0 = 1000GeV2 (78)

σπptot(sq) = 23.6

(

sq
s0

)0.08

mb 〈r2ch〉π = 0.44fm2, (79)

where all values depend on energy sq = sxq rather than on Bjorken x and also an energy dependent
parameter σ0(sq) is introduced in order to correctly reproduce hadronic cross-sections. For the pion-proton
total cross-section, the parametrization from [36] is used with fit parameters taken from [37]. This formula
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also contains only Pomeron part of the dipole cross-section, nevertheless, the Reggeon part can be easily
added by considering full form of the pion-proton cross-section(Barnett:1996hr)

σπptot(sq) = 23.6

(

sq
s0

)0.08

+ 1.425

(

sq
s0

)−0.45

mb. (80)

3.4 IIM or CGC

This parametrization was proposed by Iancu, Itakura and Munier [38] including charm contribution

σqq̄(x, r, b) = σ0N0

(

rQs(x)

2

)2γeff (x,r)

rQs(x) ≤ 2

= σ0

(

1− e−A ln2(BrQs(x))
)

rQs(x) > 2

γeff (x, r) = γ +
1

κλY
ln

(

2

rQs(x)

)

Y = ln

(

1

x

)

, (81)

where γeff (x, r) is an effective anomalous dimension, κ = 9.9, N0 = 0.7, Q2
s(x) =

(

x0
x

)λ
GeV 2 and

σ0 = 2πR2
p. Parameters A and B are chosen to ensure continuity between both parts of the parametrization

at rQs(x) = 2 as

A = − N2
0 γ

2

(1−N0)2 ln(1−N0)

B =
1

2
(1−N0)

−
1−N0
N0γ . (82)

Parameters , Rp, γ, x0 and λ has to be fitted to data. First fit from [1] keeps γ = 0.63 fixed and sets
λ = 0.177, x0 = 0.0027 × 10−4 and σ0 = 35.7mb. The fit has been done with mf = 0.14GeV for light
quarks and mc = 1.4GeV and data from H1 cover the range 0.25GeV2 ≤ Q2 ≤ 45GeV2. Alternative fit
was performed in [39] with γ = 0.7376, λ = 0.2197, x0 = 0.1632 × 10−4 and σ0 = 27.33mb. The fit has
been done with mf = 0.14GeV for light quarks and mc = 1.4GeV and data from H1 cover the range
0.25GeV2 ≤ Q2 ≤ 150GeV2. The most recent set of parameters comes from [40] and sets γ = 0.762,
λ = 0.2319, x0 = 6.226 × 10−4 and σ0 = 21.85mb. The fit has been done with mf = 0.14GeV for light
quarks and mc = 1.27GeV and data cover the range 0.25GeV2 ≤ Q2 ≤ 45GeV2.

3.5 IP-sat or b-Sat or BGBK

This parametrization coming from [16] is explicitly dependent on impact parameter b and, therefore, the
dipole cross section does not need to be factorized.

σqq̄(x, r, b) =

(

1− e−
π2r2

2Nc
αs(µ2)xg(x,µ2)Tg(b)

)

, (83)

where µ2 = µ20 +
C
r2

is the scale of the gluon density, at which the gluon distribution function xg(x, µ2) has
to be evolved according to LO DGLAP without quarks

dg(x,Q2)

d logQ2
=
αs

2π

∫ 1

x

dy

y
g(y,Q)Pgg(x/y) (84)
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Pgg(x) = 6

(

x

(1− x)+
+

1− x

x
+ x(1− x)

)

+
27

6
δ(1 − x), (85)

where []+ is defined as

∫ 1

x
dxf(x) [g(x)]+ =

∫ 1

x
dx(f(x)− f(1))g(x). (86)

The parameters C and µ0 are fixed to C = 4 and µ20 = 1.17 and the profile function has a Gaussian form
normalized to 1

Tg(b) =
1

2πB
exp−

b2

2B , (87)

where B = 4GeV −2. The initial gluon density for the DGLAP evolution was taken as

xg(x, µ20) = Agx
−λg(1− x)5.6. (88)

The coupling constant is taken in a one-loop form for four flavours with ΛQCD = 0.156GeV.

3.6 b-CGC

This parametrization was proposed by Kowalski, Motyka and Watt[1, 41] as a modification of the CGC
parametrization

σqq̄(x, r, b) = 2N0

(

rQs(x, b)

2

)2γeff (x,r,b)

rQs(x, b) ≤ 2

= 2
(

1− e−A ln2(BrQs(x,b))
)

rQs(x, b) > 2

γeff (x, r, b) = γ +
1

κλY
ln

(

2

rQs(x, b)

)

Y = ln

(

1

x

)

, (89)

where γeff (x, r, b) is an effective anomalous dimension, κ = 9.9, Q2
s(x, b) =

(

x0
x

)λ
(

e
− b2

2BCGC

)
1
γ

. Parameters

A and B are chosen to ensure continuity between both parts of the parametrization at rQs(x) = 2 as

A = − N2
0 γ

2

(1−N2
0 )

2 ln(1−N0)

B =
1

2
(1−N0)

−
1−N0
N0γ . (90)

Parameters BCGC , N0, γ, x0 and λ has to be fitted to data. Original set of parameters come from [1] where
γ = 0.63 is fixed and sets N0 = 0.417, λ = 0.159, x0 = 5.95 × 10−4 and BCGC = 5.5GeV−2. The fit
has been done with mf = 0.14GeV for light quarks and mc = 1.4GeV and data from H1 cover the range
0.25GeV2 ≤ Q2 ≤ 45GeV2. This fit was later re-done on the same data in [41] by allowing γ to be a free
parameter and sets γ = 0.46,N0 = 0.558, λ = 0.119, x0 = 0.184 × 10−5 and BCGC = 7.5GeV−2. The most
recent set of parameters comes from [40] and sets γ = 0.6492,N0 = 0.3658, λ = 0.2023, x0 = 0.00069 and
BCGC = 5.5GeV−2. The fit has been done with mf = 0.14GeV for light quarks and mc = 1.4GeV and data
cover the range 0.75GeV2 ≤ Q2 ≤ 650GeV2.
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Figure 10: Comparison of integrated dipole cross-sections at fixed Bjorken x. Compare to Fig. 27 of [1].
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