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i Data driven verification use data to test
HEP °

over-learning of training method, e.g. resemble behavior on learn, train and
Frantisek Hakl test data

results robustness on different portions of data (cross-validation)

Data driven
verification ® resemblance of discriminant distribution over different data sets or over
PAC model simulated and measured data (so called control plots)
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These approaches do not provide an estimation of
convenient size of data sets and information about expected
accuracy of separation.
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Probably approximately correct learning

Definition ((¢, 0)-learning algorithm in PAC model)

ep (h,8) € P(eah) =P ((c-h)u (h-2))

h is consistent if and only if {X;,...,xm} N (€A h) =0

Sc denote the set of all samples (Y,E) of fixed ¢ € C, where
Ze{-1,+1}", X e X" me Z.

(e,8)-LEARNING ALGORITHM is each mapping A* Sc — C such that for
allceC,ed e (0,1)and P on X, the probability of the set

{7’(? 2) is m-sample of ¢ and e (E,Av* ((7,2))) > e}

is smaller than the number 6.
VC-dimension: Let X be arbitrary set, C ¢ 2X and

def = = = = =
I = b|(3ceC)(b=AnN
c(m) Ac?fﬁ:mH |3ceC)( o)}
Then
f
VCaim (C) & sup {m|Mg (m) =27} .
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Theorem (main result of PAC theory)

Let C satisfy (3¢1,6, € C) (¢1 # 2 and (N2 # B orci US # X)) and C
be well-behaved . Then:

1 IfvCqim (C) < +oo. Then

1 forany0 <e< % there is no (¢, §)-learning algorithm with number of
queries less than

max(1 ~In (%),vcd,-m(C)-ﬁ —2(e(1 —5)+5))> )

€

2 for arbitrary 0 < e < 1, any learning algorithm using at least

max (ilogz (%) , 78vcdjm ©) logy (E)) (2)

queries and returning a consistent hypothesis is an (e, §)-learning
algorithm.

2 (e, 0)-learning algorithm for C exists <> VCgim (C) < +oo0.
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Sketch of the proof:

1 1 ° 1:‘ In (%) (c&c) Any nontrivial concept class can be reduced
to one of the cases discussed above. For uniform probability we
get a contradiction.

e d(1—2(e(1—6)+9)): (c&c) Reduce X to d-element subset
with uniform probability. Then use the "matrix" Z 5 gef e (G, h)
to show, that m > d (1 — 2 (e (1 — 8) + 4)) imply that (3h*)
contradicts (e, §)-property ... "broadly speaking".
2 In more steps we show that from (2) follows that

Proby, ({x,-,...,xm} ‘ (W’e {hac|heH} } Prob (T) >e>

({x;,...,xm}ﬂT:(Z)))ch.

2 ® < (construction) Use Zermelo’s well-ordering theorem to well-order
H . Let algorithm get m-sample of € and return the first hypothesis
consistent with ¢ . The statement follows from 1)-2).

e = (by contradiction) For any d € N we carry out steps 1)-1)-(second
term). Choose (e, §) such that (1 — 2 (e (1 — §) + J)) > 0. Hence m
can’t be upper-bounded.
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Nearest neighbor (NN) is consistent and has a known vCgm (NN) u.b.

Lemma (Union, Intersection)

LetUo E'{UL & |(viek) @ e } ke {5
and VCgm (C) = d > 1 be finite. Then
VCdim (Uk,C) < 2dk|0g2 (3k) and VCdim (IK,C) < 2dk|0g2 (3k) .

(Vief() (@ eC)}

X = R", k=number of Balls (or Rect.), VCgim (Ballh) = n+ 1, VCyim (Rects) = 2n

Euclidean Manhattan

VCqim (NNpan,) < 2(n—+ 1)klogs (3k), consistent, VCgim (NNgect,) < 4nklogy (3k)
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IINC algorithm is consistent and has a known VCgim (IINC) upper bound

Lemma

Let X be an arbitrary set, C C 2X. Then
1 ifanytwo setsin C are disjoint then vC gy, (C) = 1,
2 VCgim (C) =1 = VCqim (Uxc) < k.

IINC outline (basic)

® for a new (unspecified) point
compute distances to all k
known points

® sort points by inverted
distances

® put new point to the set of the
first point in sorted sequence

® .. sothe "green" setis an
union of pairwise disjoint sets

VCgim (IINC) < k and consistent hypothesis
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Corollary

Let [{xj,...,Xxm} N¢C| = pm, e.g. pis the ratio of positive examples. It follows
(recall second lower bound m > wlogz (%) nis dimension of examples):

NN Euclidean: 1> p-16(n+1) x log, (3pm) x E'ng (E)]
NN Manhattan: 1 > p-32n X logp (8pm) x {%bgz (?)]
IINC: 1>p-8 x [togs (2)]

(note that the first constrain implies log, (3pm) > log, (%Iog2 <%)))

Discussion

® unusable for "large" values of p (e.g. p ~ ¢€)

® dimension of examples can be considered constant; corresponds to the
number of relevant and reasonable features
desired accuracy of separation (¢
logarithm of positive examples

® applicable in the case of very rare positive examples

e for NN p should be proportionate to



EsilEes e Example of HEP data set size

the Ie.arn}ng (source Measurement of Electroweak Top Quark Production at D@, Yun-Tse Tsai,

set size for
K-NN and ING Rochester, 2013)

met}:‘ggs |n Pre-tagged event yields

> w1 =]
Frantiek Hakl Run IIa, 1 fb Run IIb, 8.7 fb
Electron Channel Muon Channel Electron Channel Muon Channel

Data driven 2 jets 3 jets 2 jets 3 jets | 2 jets 3 jets 2 jets 3 jets
verification Signals
PAC model th 20 8.1 20 9.4 158 39 133 34
Wil Background Sum 14962 3586 18610 5125 | 78502 11526 72382 11192
Lo Background + Signal | 15021 3611 | 18672 5156 | 78941 11642 | 72764 11294
K-NN and 1ING Data 15021 3611 18672 5156 | 78936 11641 72762 11293
k-NN methods

IING methods Table 5.13 Pre-tagged event yields after selection.
HEP
separation
Conclusion

Estimated range of p for selected processes:
Top Quark Production at D@ p € (0.001,0.003)
Higgs boson search at ATLAS, LHC p~10—4—-10-6

NOvVA: muon antineutrinos — electron antineutrinos 18 events over three years
(press release, June 4, 2018)
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Data driven . . . .
v tesian ® method of learn data size estimation is suggested for very rare processes
PAC model ® upper bound of the the Vapnik-Chervonenkis dimension for consistent
Definitons nearest neighbor and IINC like methods is derived

Main theorem

Proof ® set size estimation is applicable in applications in which the ratio p of
K-NN and IING positive examples is extremely small

k-NN methods

IINC methods NN: 0 S const.-dim(X)-e
HEP ~ log(# of pos. examples)
separation

: < '
Conclusion IINC: p < const. e
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