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Data driven verification use data to test
• over-learning of training method, e.g. resemble behavior on learn, train and

test data
• results robustness on different portions of data (cross-validation)
• resemblance of discriminant distribution over different data sets or over

simulated and measured data (so called control plots)
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• validity of apriori known statistical characteristics of data
(enhanced by cross-validation)
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M_bb for signal and background in range -0.20-0.30 (../stable-version/dummy//0007.test.dta.res)

signal 6, mean=105.2, var=10.5 (smooth 0)
background 1099, mean=65.8, var=53.9 (smooth 0)
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0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

M_bb for signal and background in range 0.60-1.20 (../stable-version/dummy//0007.test.dta.res)

signal 73, mean=106.6, var=15.9 (smooth 0)
background 305, mean=62.5, var=52.1 (smooth 0)

signal+background

These approaches do not provide an estimation of
convenient size of data sets and information about expected

accuracy of separation.
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Probably approximately correct learning

Definition ((ε, δ)-learning algorithm in PAC model)

1 eP̃

(
h̄, c̄
) def

= P̃
(
c̄ 4 h̄

)
= P̃

((
c̄
.
−h̄
)
∪
(

h̄
.
−c̄
))

2 h̄ is consistent if and only if {xi , . . . , xm} ∩
(
c̄ 4 h̄

)
= ∅

3 S̄C denote the set of all samples
(
^
x , ~z

)
of fixed c̄ ∈ C, where

~z ∈ {−1,+1}m,
^
x ∈ X̄ m, m ∈ Z .

4 (ε, δ)-LEARNING ALGORITHM is each mapping Ã∗ : S̄C → C such that for
all c̄ ∈ C, ε, δ ∈ (0, 1) and P̃ on X̄ , the probability of the set{

^
x
∣∣∣(^x , ~z) is m-sample of c̄ and eP̃

(
c̄, Ã∗

((
^
x , ~z

)))
≥ ε

}
is smaller than the number δ.

5 VC-dimension: Let X̄ be arbitrary set, C ⊂ 2X̄ and

ΠC (m)
def
= max

Ā⊂X̄ ,|Ā|=m

∣∣{b̄
∣∣(∃c̄ ∈ C)

(
b̄ = Ā ∩ c̄

)}∣∣
Then

VCdim (C)
def
= sup

{
m
∣∣ΠC (m) = 2m } .
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Theorem (main result of PAC theory)
Let C satisfy (∃c̄1, c̄2 ∈ C)

(
c̄1 6= c̄2 and

(
c̄1 ∩ c̄2 6= ∅ or c̄1 ∪ c̄2 6= X̄

))
and C

be well-behaved . Then:

1 If VCdim (C) < +∞. Then

1 for any 0 < ε < 1
2 there is no (ε, δ)-learning algorithm with number of

queries less than

max

(
1− ε
ε

ln

(
1
δ

)
,VCdim (C) · (1− 2 (ε (1− δ) + δ))

)
. (1)

2 for arbitrary 0 < ε < 1, any learning algorithm using at least

max

(
4
ε

log2

(
2
δ

)
,

8VCdim (C)

ε
log2

(
13
ε

))
(2)

queries and returning a consistent hypothesis is an (ε, δ)-learning
algorithm.

2 (ε, δ)-learning algorithm for C exists⇔ VCdim (C) < +∞.
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Sketch of the proof:

1 1 • 1−ε
ε

ln
(

1
δ

)
: (c&c) Any nontrivial concept class can be reduced

to one of the cases discussed above. For uniform probability we
get a contradiction.

• d (1− 2 (ε (1− δ) + δ)): (c&c) Reduce X̄ to d-element subset

with uniform probability. Then use the "matrix" Z c̄,h̄
def
= eP̃

(
c̄, h̄
)

to show, that m > d (1− 2 (ε (1− δ) + δ)) imply that
(
∃h̄∗)

contradicts (ε, δ)-property . . . "broadly speaking".
2 In more steps we show that from (2) follows that

ProbP̃

(
{xi , . . . , xm}

∣∣∣ (∀T̄ ∈ {h̄4 c̄
∣∣h̄ ∈ H

} ∣∣∣ ProbP̃

(
T̄
)
> ε
)

(
{xi , . . . , xm} ∩ T̄ = ∅

) )
≤ δ .

2 • ⇐ (construction) Use Zermelo’s well-ordering theorem to well-order
H̄ . Let algorithm get m-sample of c̄ and return the first hypothesis
consistent with c̄ . The statement follows from 1)-2).

• ⇒ (by contradiction) For any d ∈ N we carry out steps 1)-1)-(second
term). Choose (ε, δ) such that (1− 2 (ε (1− δ) + δ)) > 0. Hence m
can’t be upper-bounded.
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Nearest neighbor (NN) is consistent and has a known VCdim (NN) u.b.

Lemma (Union, Intersection)
Let Uk,C

def
=
{⋃k

i=1 c̄i

∣∣∣(∀i ∈ k̂
)

(c̄i ∈ C)
}

, Ik,C
def
=
{⋂k

i=1 c̄i

∣∣∣(∀i ∈ k̂
)

(c̄i ∈ C)
}

and VCdim (C) = d ≥ 1 be finite. Then

VCdim
(
Uk,C

)
≤ 2dk log2 (3k) and VCdim

(
Ik,C
)
≤ 2dk log2 (3k) .

X̄ = <n, k=number of Balls (or Rect.), VCdim (Balln) = n + 1, VCdim (Rectn) = 2n

Euclidean Manhattan

VCdim
(
NNBalln

)
≤ 2(n + 1)k log2 (3k), consistent, VCdim

(
NNRectn

)
≤ 4nk log2 (3k)
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IINC algorithm is consistent and has a known VCdim (IINC) upper bound

Lemma
Let X̄ be an arbitrary set, C ⊂ 2X . Then

1 if any two sets in C are disjoint then VCdim (C) = 1,

2 VCdim (C) = 1⇒ VCdim
(
Uk,C

)
≤ k.

IINC outline (basic)
• for a new (unspecified) point

compute distances to all k
known points

• sort points by inverted
distances

• put new point to the set of the
first point in sorted sequence

• ... so the "green" set is an
union of pairwise disjoint sets

VCdim (IINC) ≤ k and consistent hypothesis
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Corollary

Let |{xi , . . . , xm} ∩ c̄| = ρm, e.g. ρ is the ratio of positive examples. It follows
(recall second lower bound m >

8VCdim(C)
ε

log2

(
13
ε

)
, n is dimension of examples):

NN Euclidean: 1 > ρ · 16(n + 1) × log2 (3ρm)×
[

1
ε

log2

(
13
ε

)]
NN Manhattan: 1 > ρ · 32n × log2 (3ρm)×

[
1
ε

log2

(
13
ε

)]
IINC: 1 > ρ · 8 ×

[
1
ε

log2

(
13
ε

)]
(note that the first constrain implies log2 (3ρm) > log2

(
12ρ
ε

log2

(
2
δ

))
)

Discussion

• unusable for "large" values of ρ (e.g. ρ ' ε)
• dimension of examples can be considered constant; corresponds to the

number of relevant and reasonable features

• for NN ρ should be proportionate to desired accuracy of separation (ε)

logarithm of positive examples
• applicable in the case of very rare positive examples
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Example of HEP data set size
(source Measurement of Electroweak Top Quark Production at D∅, Yun-Tse Tsai,
Rochester, 2013)

Estimated range of ρ for selected processes:

Top Quark Production at D∅ ρ ∈ 〈0.001, 0.003〉

Higgs boson search at ATLAS, LHC ρ ' 10−4 − 10−6

NOvA: muon antineutrinos→ electron antineutrinos 18 events over three years
(press release, June 4, 2018)
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Conclusion

• method of learn data size estimation is suggested for very rare processes
• upper bound of the the Vapnik-Chervonenkis dimension for consistent

nearest neighbor and IINC like methods is derived
• set size estimation is applicable in applications in which the ratio ρ of

positive examples is extremely small

NN: ρ / const.·dim(X̄)·ε
log(# of pos. examples)

IINC: ρ / const . · ε
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