Mixed effects model for SAE

Tomáš Košlab

FNSPE CTU in Prague

June 22, 2018

Tomáš Košlab

Mixed effects model for SAE

FNSPE CTU in Prague

・ロン ・回 と ・ ヨ と ・ ヨ と …

∃ nar

Outline

Model

Parameter estimation

Prediction of area effects

Simulation experiment

Tomáš Košlab

Mixed effects model for SAE

- N individuals in D domains, N_d individuals in the d-th domain
- every individual modelled by a Bernoulli-distributed r.v. Y_{dj} (above / below poverty line), realization y_{dj}
- sample of size n_d from every domain
- ► task: predict the population mean in every domain, $\overline{y}_d = \frac{1}{N_d} \sum_{j=1}^{N_d} y_{dj}$
- if n_d is too small for a direct estimate of sufficient quality small area

イロト イポト イヨト イヨト 一日

Proposed model

For $Y_{dj} \sim Be(p_{dj})$ we propose the following logit regression model

(F)
$$\text{logit}(p_{dj}) = \mathbf{x}_{dj}^T \beta + \mu_d, \quad d = 1, \dots, D_F, \quad j = 1, \dots, n_d,$$

(R) $\text{logit}(p_{dj}) = \mathbf{x}_{dj}^T \beta + u_d, \quad d = D_F + 1, \dots, D, \quad j = 1, \dots, n_d$
(1)

where

- x^T_{dj} = (x_{dj,1},..., x_{dj,p}) is the vector of covariates belonging to the *j*-th individual in the *d*-area,
 β = (β₁,..., β_p)^T is the vector of unknown fixed parameters,
 μ = (μ₁,..., μ_{D_e})^T is the vector of fixed area effects,
- $\boldsymbol{u} = (u_{D_F+1}, \dots, u_D)^T$ is the vector of random area effects.

Tomáš Košlab

Model - assumptions & notes

- data in different areas are independent (each area has its own effect)
- data in areas modelled by a fixed effect are independent
- probability p_{dj} can be expressed as

(F)
$$p_{dj} = \frac{\exp(\mathbf{x}_{dj}^{T}\beta + \mu_{d})}{1 + \exp(\mathbf{x}_{dj}^{T}\beta + \mu_{d})}, \quad d = 1, ..., D_{F}, \quad j = 1, ..., n_{d},$$

(R) $p_{dj} = \frac{\exp(\mathbf{x}_{dj}^{T}\beta + u_{d})}{1 + \exp(\mathbf{x}_{dj}^{T}\beta + u_{d})}, \quad d = D_{F} + 1, ..., D, \quad d = 1, ..., n_{d}$
(2)

▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

Tomáš Košlab

PQL method

log-likelihood function

$$I(\beta, \mu, \sigma^{2}; \mathbf{y}) = \sum_{d=1}^{D_{F}} \sum_{j=1}^{n_{d}} \left[y_{dj} \log p_{dj} + (1 - y_{dj}) \log(1 - p_{dj}) \right] \\ + \sum_{d=D_{F}+1}^{D} \log \int_{R} \prod_{j=1}^{n_{d}} p_{dj}^{y_{dj}} (1 - p_{dj})^{1 - y_{dj}} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{u_{d}^{2}}{2\sigma^{2}}} du_{d}$$
(3)

- PQL can be derived from the Laplace approximation of the log-likelihood function, *I_{Laplace}*
- omission of the last term in *I_{Laplace}* (for computational reasons) leads to *I_{PQL}*
- estimates of β, μ are obtained by N.-R. algorithm, estimate of σ^2 by fixed-point

Tomáš Košlab

Empirical Best Predictor (EBP)

- closely related to the Best Predictor (BP)
- BP of $\hat{\overline{y}}_d$ can be expressed as

$$\hat{\overline{y}}_d = \frac{1}{N_d} \left(\sum_{j \in s_d} y_{dj} + \sum_{j \in r_d} \hat{y}_{dj} \right) = \frac{1}{N_d} \left(\sum_{j \in s_d} y_{dj} + \sum_{j \in r_d} \hat{p}_{dj} \right)$$
(4)

where

- predictions are denoted by hats
- s_d and r_d denote the indices of observations from the d-th area that are inside and outside the sample respectively

 EBP is obtained by substituting parameter estimates into formulas for BP

Tomáš Košlah

Plug-in predictor

- the formula for plug-in predictor coincides with (4)
- ► the difference lies in the term p̂_{dj} while for EBP (BP) it is calculated by a formula, plug-in is based on the formulas (2)

$$p_{dj} = \frac{\exp(\mathbf{x}_{dj}^{T}\boldsymbol{\beta} + \mu_{d})}{1 + \exp(\mathbf{x}_{dj}^{T}\boldsymbol{\beta} + \mu_{d})}, \quad d = 1, \dots, D_{F}, \quad j = 1, \dots, n_{d},$$

$$p_{dj} = \frac{\exp(\mathbf{x}_{dj}^{T}\boldsymbol{\beta} + u_{d})}{1 + \exp(\mathbf{x}_{dj}^{T}\boldsymbol{\beta} + u_{d})}, \quad d = D_{F} + 1, \dots, D, \quad d = 1, \dots, n_{d}$$
(5)

where the estimates of β , μ_d and the predictions of u_d are substituted into the equations

requires predictions of u_d

Tomáš Košlah

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Setup

- D = 30 domains
- $D_F = 5$ areas modelled by a fixed effect
- ▶ $N_d = 1000, d = 1, ..., D$
- design matrix \rightarrow 3 parameters $\beta_1, \beta_2, \beta_3$
 - ► *X*_{dj,1} ~ *Be*(0.48)
 - ► *X*_{dj,2} ~ *Be*(0.6)
 - if $x_{dj,2} = 1$, then $X_{dj,3} \sim Be(0.5)$, else $x_{dj,3} = 1$
- $Y_{dj} \sim Be(p_{dj})$, values of y_{dj} are generated using equation (2)
- ▶ different sample sizes for areas with fixed (n^F_d) and random effects n^R_d
- ► task: prediction of \overline{y}_d for every domain for the whole population

Results

Figure: BIAS of predictions using the respective methods.

<ロ> <同> <同> < 回> < 回>

Tomáš Košlab

Mixed effects model for SAE

Figure: MSE of predictions using the respective methods.

Tomáš Košlab

Mixed effects model for SAE

FNSPE CTU in Prague

Conclusion & future tasks

- predictions obtained by EBP and plug-in predictor are of comparable quality
- both are superior compared to the direct estimate, especially for small amounts of data
- estimate of prediction error parametric bootstrap
- application on real data and comparison with other models

イロン 不同 とくほう イロン

Thank you for your attention!

Tomáš Košlab

Mixed effects model for SAE

▶ < 돌 > 돌 つへ(ENSPE CTU in Prague

イロト イポト イヨト イヨト