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@ Short summary of MVA and ML history in HEP (personal view).
@ Current status of ML and MVA in HEP.

@ MVA and ML example in one analysis, where we contributed.

@ Challenges and future of ML in HEP.

MACHINE LEARNING

DEEP LEARNING

Machine
Learning

begins to Deep Learning
breakthroughs drive
Al boom,

% Difference Between Al, ML and DL [source].
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Short History

1763
1805
1936
1950
1951
1967
1995

21°C

Multivariate Pattern Recognition

Bayes’s theorem

Least squares method

Linear discriminant analysis (Fisher-Discriminants)
Turing’s machine

First neural network

Nearest Neighbor

Support vector machines
Random forest

Boom of ML in applications: IBM's Watson, Google Brains and AlphaGO, Chatbot
passes the Turing Test, Facebook DeepFace, Al poker bot Libratus, etc.
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History of MVA and ML in HEP

Examples of application of MVA and ML in HEP experiments

@ Linear Decision Boundaries and Naive Bayesian classifiers in 7 particle identification
and studies:

o MARK Il at SLAC (1980s),
@ LEP collaborations ALEPH and OPAL (1990s).

@ Artificial Neural Networks in jet identification and tracking at CDF and DO (1992).

@ Boosted Decision trees (BDT) - MiniBooNE, an experiment at Fermilab searching for
neutrino oscillations (2005).

@ TMVA - Toolkit for Multivariate Data Analysis (2007).
The "era of hard cuts" was gradually ending.

IMVA

; TMVA Toolkit for Multivariate Data Analysis with ROOT [source].

5504
i
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History of MVA and ML in HEP

Examples of application of MVA and ML in HEP experiments

@ Combination of BDT, BNN and ME - Observation of Single Top-Quark Production
(2009).

@ 49 input variables -> 3 discriminants -> one final discriminant
This approach was reused in 2013 measurement again

Mu]tivariate Analysis

g - |
Combine different ¢ - . signal
kinematic variables background
with some i- ;
discrimination power 1

into one variable with

il
larger discrimination. _

After training

Boosted Decision Tree
(8DT)

Bayesian Neural
Networks (BNN)

Matrix Element Method
(ME)

@;55% //
® ®
2R

5
@ %‘C » Frday, May 17, 2013
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Jyoti Joshi [ADM meeting 17.5.2013]
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History of MVA and ML in HEP

Examples of application of MVA and ML in HEP experiments

@ Observation of Higgs Boson by CMS and ATLAS collaborations (2012).

s
(Y]

“~ Electron reconstruction and identification L H—vyy
Multivariate electron identification in 2012 . . . . .
— ECAL, tracker, ECALtracker-HCAL o ) st v st * Analysis selection (MultiVariate Analysis
matching and impact parameter (IP) F‘ i - MVA)
observables o S5 o
Background from data samples . —————— Lo S Bt — Vertex ID
~ Wijet for training ECALvariable | .Jf * Input variables: p,* ), p_ balance wrt yy,
~ Zsjetfor testing = GpinEB ;’“kf[\“(;g""z conversions information
Pem;rénn/anc; ™ pr<20 GeV ot )| re30Gov — ID photons p;,>m, /3 pr,>m,, /4
T g i ] * MVA Diphoton discriminant categories
Efficiencies e — High score
— Via tag-and-probe at the Z->ee peak % LIy -gsignaHike events

* good m,, resolution
— Designed to be m,, independent
— Trained on signal and background MC
— Input variables:
* Kinematic variables: p 1, / m,,, n,, cos(¢; ®,)
« Photon ID MVA output for each photon
* Per-event mass resolutions for the correct and

o '™ incorrect choice of vertex

0T aiD Efficiancy

iohoton MVA ot

VG 0T 0% 67 05 0 LR
avier Background Eficiency b, {GeVi] N er niversty of Ovied

Example of MVA usage by Cuevas in "CMS SM Higgs searches".

J|r| Franc: Machine Learning in High Energy Physics | SPMS 2018 | 6 |



http://www.cvut.cz/en
https://www-d0.fnal.gov/
https://arxiv.org/abs/1207.7235

History of MVA and ML in HEP

HEP meets ML: Kaggle HiggsML

n High Energy Physics meets Machine Learning

@ More than 2000 teams
@ Largest competition at the time.

@ Winners presented solutions worldwide
(DeepMind, OpenAl, ...).

@ XGboost was the core of winning
solution.

@ GPU’s were used in many solutions.

Was it pure success or HEP community gave it up to be state of the art in MVA and ML?
@ Can we understand to MVA and ML and how can we code it in our systems.

@ Before TMVA we used simple cuts, now we have tools which bring significant
improvement, but is it enough?

@ We can not use "black boxes", we need to understand what we are doing.
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MVA and ML in HEP now
Current status of MVA and ML in HEP

Huge change in ML and HEP communities in last 5 years.

@ ML community found out that HEP problems are interesting and unique.
@ HEP community discovered ML tools out of ROOT and TMVA.

To follow what ML community is doing in HEP read and see

@ Machine Learning Community White Paper [pdf file]
@ Inter-experimental LHC Machine Learning Working Group in CERN

e The community increasingly uses non CERN standard libaries like keras,
scikit-learn, XGBoost, either as standalone libraries or through interfaces
with ROOT.

o 1st ILM Machine Learning Workshop

e 2nd ILM Machine Learning Workshop

e Fermilab Machine Learning Group
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MVA and ML in HEP now
Current status of MVA and ML in HEP

Data Layer
ROOT Files ROOT Files DB / HDFS etc.
Loading Layer
Ad hoc ROOT Numpy / HDF5 Converters / Numpy / HDF5 Converters /
ETL logic Loaders Loaders

Training Layer

Keras, TensorFlow, Keras, TensorFlow,

TMVA PyTorch, XGBoost, PyTorch, XGBoost,

scikit-learn, ...

scikit-learn, ...

Serving Layer

Deployment Target
(TMVA)

Deployment Target
(lwtnn, TensorFlow,

Deployment Target
(TensorFlow Serving,
SageMaker, etc.)

TMVA wrappers)
HEP (Circa 2013) HEP (Circa 2018) Industry
source: Luke de Oliveira talk at IML2
\g&ument Management: Make people training ML models more productive.
orsal Serving Layer: Make people using ML models more productive. w

R &)
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MVA and ML in HEP now
Current status of MVA and ML in HEP

TMVA TensorFlow Theano Scikit R Spark VW libFM

Learn ML
ROOT [T, C] v
CSV [F] v v v v v X X
libSVM [M] X v
VW [M] v
RGF [M]
NumPy [R] v v v v v X X
Avro [S, R] v v
Parquet [S, C] v v
HDF5 [S]
R df [R] v

Where T Trees, F at tables, M sparse matrices, R row-wise arrays, C column-wise arrays, S static
data structures. Source: ML white papers.
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MVA and ML in HEP now

Python and R in HEP

Free and runs on any standard computing OS.

Frequent releases, active development, very active user community.
ROOT/TMVA Keras interface.

TensorFlow is growing much faster and gains more support (Thanks Google :-).

KDnuggets Analytics, Data Science, Machine
Learning Software Poll, top tools share, 2015-2017

0% 10% 20% 30% 40% 50% 60%
Python s
Rlanguage ]
bt W 2017 %share
language
RapidMiner ™ 2016/%share
2015 %share
Excel
Spark
Anaconda
Tensorflow
scikit-learn
Tableau
q
/%y 6 KNIME
AV
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MVA and ML in HEP now

Examples of application of MVA and ML in HEP experiments

Application of Deep Neural Networks (ten years later than Google)
@ lIdentification of neutrino interactions at NOvA by CNN (2016)

o ooy

w w

s0 s0

3 0puimte= w0 \\\

30, 30} e

» 0

" 2

O I % @ %

e prane
X-view Y-view

(b) v, CC interaction.

See talks of Petr Bour and Miroslav Kubu for more details.

@ Identification of objects or particular particle types on ATLAS/CMS (2017)
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MVA and ML in HEP now

P meets ML again: Kaggle Track

TRACKML PARTICLE @ $25,000 Prize Money

TRACKING BHAL.LENGE o Now 441 teams

Can machine learmi
discovering and chal

@ still 2 months to go until merger
deadline

O(10K) tracks/evt
Challenge Datasets

@ Accurate simulation engine to produce
realistic dataset

@ One file with list 3D points

@ Typical events with 200 parasitic
collisions ( 10.000 tracks/event) O(100M) tracks/sec

@ Large training sample 100k events, 10

’gga{%ﬁ?gillion tracks 100 GB.
s D&
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Example of our MVA application
D() experiment

Tevatron - pp collider:

o circular accelerator (6.86 km).

o pp collisions at 1.7 MHz.

e most energetic collider until the
turn on of the LHC.

@ Unique data set: worlds largest pp data
set for a long time.

@ Center Mass energy: /s = 1.96 TeV.

@ Experiments: Two multi-purpose
Lol [ detectors CDF and D@ with well
e understood detectors.

G5 @ Run Il: begun in 2001 and each
experiment recorded ~ 10fb~ until
T T September 2011.

w Run Il Integrated Luminosity

LA T T @ Presenting measurement has been done
' T with the full dataset 9.7fb~".
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Example of our MVA application

Strong interaction: Top pair production

Top Pair Branching Fractions

e Top Quark at Tevatron:
alljets™ 46% @ Mass: m; = 174.34 £ 0.64GeV

@ Lifetime: t ~ 5 x 107%s << lNgep

THets 15% .
@ Production:

~ 85% by gg annihilation
T 1Dz/‘f’»/e/ / ~ 15% by gg fusion
e 20,
1\,§\H‘é~’1\%,0 < ujets 15% @ Top decay: BR(t —+ W + b) ~ 100%

[

ctjets 156%
T " " caow
dileptons leptontjets Situation in detector (4 missing transverse energy)

Lepton

— Lightqus

w quark jot

FSRjet

Samples are classified according to W-decay: ¢ + jets and ¢¢ channels are under concern and

full dataset 9.7fb ! is used.
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Example of our MVA application

Primary interaction vertex in Top pair production

o Jet 2
Jet 1 % \‘
DR\ e Jdet3
R\ 4
N\ \
AN ,/jf
/
Primary interaction vertex
//’/
4
y/ ,". Missing E;
Jet4 lepton

»Syg
s D&
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Example of our MVA application

Primary interaction vertex in Top pair production

Jet1

Top pair 1
production ? > f

7 N Missing E;
Jet4

»Sy;v
o D&

Jiri Franc: Machine Learning in High Energy Physics | SPMS 2018 | 16 |



http://www.cvut.cz/en
https://www-d0.fnal.gov/

Example of our MVA application

Primary interaction vertex in Top pair production

Jet 1 Ol

W + jets

1 {y Missing E

fa%ﬂ%
oS D=3
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Example of our MVA application

Primary interaction vertex in Top pair production

QCD multijet
production ? /\

s { Missing E;

fa%ﬂ%
oS D=3
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Example of our MVA application

Primary interaction vertex in Top pair production

o Jet2
Jet 1 Ol
# |91 [J2 |J3 |94 Y i e Jet3
19|49 b |b \\\ “ {‘]’/
2 (91| 9 | b | by \\\\\ ! VA
Y/
3 (a; by | q|b b2 /
4 [ai [ by | by | @ q1 b
5 gy [ by | @y | by 1
6 [a: | by [ by | | 4—.
”/
Vi
I
Vs Missing E;

lepton
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Example of our MVA application

Primary interaction vertex in Top pair production

o Jet2
Jet1 Bl
Q /

# Jnnfialue ™ Al oo Jet3 4 [J1 ] J2 | J3 s
1 |ar|a|b|b \4\\ ‘ /!( ! 13 | by [ 9 | g | by

N\ \ A
2 || G | b | by AN Vv 14 | by [ a1 | by | @
3 g | by | a| by V4 15 | b, | 9 | a4 | b,
4 || b | b | @ 16 [ by | 92 | by | g4
5 a1 |b|q|b 17 ]by | b |9 | @
6 gy | by | by | @ 18 | by | by |9 | &
7 G | @ | by | by 19 | by [ as [ g | by
8 | | @ [by| by Total of 24 20 | b, | 9 [ by | @
9 G | by |4 | by t t_ I 21| b, | 4 | as | by
10| g | b | b | q permutations : 22 | b, | 9 [ by | 9

/
M| aq| b | a | b /,," 23 | by | by [ a1 | @
12 | g | by | by | qy o/ 24 | b, | by [ g | q
s
VA Missing E;
/s
Jetd lepton
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Example of our MVA application
Selection of tt Candidates

Main selection cuts in ¢ + jets channel:

5 \“7 variable kinematic range
pT(/) pT(/) > 20 GeV
, £ n(e) in(e)| < 1.1
VAN n(p) n(k)] < 2.0
N Zr Er > 20 GeV
1" jet n(jet) In(jet)| < 2.5
jet p;(jet)  p;(jet) > 20 GeV

+ additional cuts

The measurements in both decay
channels employ the b-tagging
discriminant output distribution as
provided by the b-ID MVA.

2% 300 8
Data sample: Full Data Set (9.7f/b™!) with selection: Phys.Rev.D 90,092006 (2014)
The main goal: Measurement of the inclusive tt cross section using MVA and b-ID methods
in £ + jets and £¢ channels and compute pole mass.

| SPMS 2018 | 17 |
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Example of our MVA application
¢ + jets Yield table:

6 analysis channels in ¢ + jets :
to the lepton type (electron, muon) and the number of jets (2, 3, > 4)

+j -Yi 24
70000,00 3 l+jets electron channel - Yield e+24 jets
60000.00 —
50000,00
40000,00
30000,00
20000,00 1,04%| -
T

10000,00 — 1795 2,729 |

0'00 - I

e+ 2jets e+ 3jets e+>4jets
HW+jets B Multijets Zjets  EDiboson mSingletop W tthar dilepton W ttbar l+jets

Signal rate in MC(Signal from Alpgen+Pythia):
H 2 jets 3 jets > 4 jets
e 1.17% 12.24% 38.81%

ﬁ%?& n|| 0.88% 11.01% 39.01% w
IS
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Example of our MVA application

Does the MC describe the data? (@) D0 9.7 fb" JAindt=1.98

1+2jets -=Da@ Singletop

W ti(+et) Z+jets
i) [ Whi+jets
30000, = M Diboson [ Wi+jets

B Multijet

@ Task: Check the MC and data agreement for all
used kinematical and topological variables.

Ratio

o -

vav o
- .

@ Tools: Control plots and statistical hypothesis
; 100 200 300 400 500
testing. H, [GeV]

@ Weighted homogeneity tests: More information _§ (i) D09.7 b 72Indf=2.03
in J. Trusina and A. Novotny talks - stay tuned! 2 et

The data are compared to the sum of predicted

contributions from signal and background processes,

using the theoretical value of o, = 7.48 pb and

me = 172.5 GeV.
'% 1'1 _-..i!I;iIEEIIIE PLIT
Z 05 :

0 0.5 1

smax
lI:-ID
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¢ + jets variables selection

Analyzed: 46 kinematical and topological
variables (e.g. Hr, Aplanarity, Sphericity,

M (jets), lepton pr, -..) + Jii5 ma-

Task: Select variables with good MC vs. Data
agreement and good separation power between
signal and background.

Tools: Statistical hypothesis testing (KS test,
AD test, x° test, LR test, ...) and TMVA
ranking.

Selection: 25 types of good modeled variables
with best separation power.

b-tagging: MVA b-ID output distribution ji*\
has been included

DB

zO
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Example of our MVA application

(1/N) dN/0.0103 units

% 005 01 015 02 025 03 035 0

(1/N) dN/11 units

UI0-flow ($,B): (0.0, 0.0)%1 (0.0,00)%

Apla [units]

Input variable: JIMVA1

(1/N) dN/0.0251 units

© UIo-flow ($,8): (00, 0.0% /01, 0.01%

00 350 400 450 50(
Ht [units]

WO-flow (S,B): (0.0, 0.

06 08 1
JMVAT [units]
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Example of our MVA application

¢ + jets discrimination by TMVA

@ Different MVA methods has been tried.

o , (b) D0 9.7 fb _ _ _
£ I e+3 jets @ TMVA BDTG with gradient boost trained
S 10° on 25 types of variables 4+ ji%d .
) @ Each individual background contribution was
10 used in the training and verified that there is
no bias due to overtraining of the method.
10 1
1 0.8
L 14
® 1.2 7 e | 5
(] '1.-! i AT v v T %)
14 o a3, ot 1 B L B S Bt £ £ 506
8.8 S 2 \
-1 -0.5 0 0.5 1 o4 DOMC e + 3 jets
@ The combination of pure o _°°mT’i“ed IMI\;/\?A - ;

. - --topological H
fcopologlcal and MVA. b-ID method 02 e boID MVA \
improved the separation by 10%. RN

@ The area under the ROC curve is % 07 02 03 04 05 05 07 08 08 \1
around 0.9 for all 6 analysis Background Rejection

/ fhannels when using TMVA discr.
et DO
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Example of our MVA application

Discrimination by BDTG - optimal cutting:

Number of events

Cl:

lassification by BDTG
Channel: ele-3Jets

we
4000 ® Data 1 . o
0.8 T
206 / T
2000f |, 7 | o
S04/ e
s | -
"oz -
e AUC:90.774
] 0.6 2 0 06 1 % 0.2 0.4 0.6 08
Discriminant STest False positive rate
BTeat
o sTan
h ®  BTrain
&
5 4
3
5
e — e
. b
. 3
AN =2
g
\ 2
\
. \ o ;
] 0.6 06 1 -1 -06 -0 06

Discriminant

2 0.
Discriminant

Signal rate in MC - Improvement:

Before discrimination

After discrimination with optimal cut

Electron 3jb

12.24%

59.24%

@)Y
&%&)
S
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Example of our MVA application
Summary and The End of The Talk

This is the end => Thank you for your attention.

Jiri Franc: Machine Learning in High Energy Physics | SPMS 2018 | 23|


http://www.cvut.cz/en
https://www-d0.fnal.gov/

f Backup

Backup
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List of investigated variables

Aplanarity: Diagonalizing the normalized quadratic momentum [\/IJU2 The invariant mass of the system consisting of the leading
tensor M yields three eigenvalues A; and is defined as 23 and  and second leading jet divided by the total invariant mass of the
measures the flatness of an event. event.

Sphericity: Similar to Aplanarit and is defined as %)‘2 + %A3- I\/l".,l.m The transverse mass of the system consisting of the

tt events show a more spherical behavior typical for heavy object leading jet, the neutrino and the lepton.

decays Mj, 1 ¢: The invariant mass of the system consisting of the second

Centrality: Ratio of the scalar sum of the transverse momentum of Ieadlng jet, the neutrino and the lepton.

all jets to the energy of all jets.

Hr: The scalar sum of the transverse momenta of all jets, the

lepton and E7. y
g—: The scalar sum of the transverse momenta of all jets and the Pj' : The transverse momentum of the individual jets /.

1
M/.,%V The transverse mass of the system consisting of the
second leading jet, the neutrino and the lepton.

lepton. i The rapldlty of the leading jet.

H3 The scalar sum of transverse momenta of jets starting with  Ag(j%, j2): The separation in azimuth between the leading and
the 3rd Jjet multiplicity bin. second leading jet.

H2:0: The scalar sum of transverse momenta of jets satisfying AR(j1,j2): The separation in the distance R between the leading
|n] < 2.0. and second leading jet.

B Missing transverse momentum. JETS : The maximum output value of the MVA b-jet

E7P3: Missing transverse momentum parallel to.
A¢(1,Fr): The separation in azimuth between the lepton and the pg—v: The transverse momentum of the reconstructed W boson,

d"_ec_tl..i_?] of ET'. ¢ £ the jet which decays hadronically.
Mjet: € Invariant mass of the Jets. (tt): The invariant mass of the tf pair.

dlscnmlnant for the leading jet.

MJTet: The transverse mass of the first two leading jets.

X ! " . Ktmi"p: AR between 2 jets multiplied by minimal pr and
Mevent: The invariant mass of the jets, lepton and the neutrino.

divided by scalar sum of the pt of the lepton and £7.

“\(‘} >
4P B
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Discrimination by BDTG -

overtraing check:

Classification by BDTG
Channel: ele-3Jets

ROC: training sample

ROC: validation sample

ROG: testing sample
= ! =
k] - 208 - 2
g 8 04 8 0.
2 g g
S F 02 &
AUC:91.038 AUC:90.855 AUC:90.774
0
(] 02 0.4 06 08 1 0 02 04 06 08 0 02 04 0.6 08 1
False positive rate False positive rate False positive rate
£ 3000 £ 3000 £ 3000
3 3 3
5 2000} | 5 2000f |, 5 2000
£ L £ H
5 1000 ERLY 5 1000 7|
H - 2 2 -
Teeee R T
-1 06 02 2 06 1 el 06 ¥ 2 06 -1 06 0. .2 0.6 1
Discriminant Discriminant Discriminant
N MC —— signal -
2 Data Background 2
g4 g4
g «  Signal train 3
s +  Background train s
3 8
& 22
H s
E = £
2 —— 2 | aaTr ———
-1 06 2 0.2 0.6 1
Discriminant

06 1

.
1
kS

Discriminant

Similar behave in all £ + jets analysis channels.

) 0]

f{?g%ﬁ;

8
s
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Backup
Used Systematics:

Flat systematics:

Diboson Xsec, Single Top Xsec, Z Xesc, Data Quality removes bad events, Fake & signal eff
uncertainty, Luminosity, MC BR uncertainty (PDG), Muon ID, Muon isolation, Muon Track,
Trigger efficency, Wlp SF, Whf SF.

Shape dependent systematics:

b fragmentation, B-tagging, C-tagging, Jet energy resolution, Jet energy scale, Jet identifi-
cation, Lepton ID, Lepton Momentum, Light-tagging, PDF, Sample dependent corrs, Tagga-
bility, Vertex confirmation, Z & W pT reweighting, Z vertex reweighting.

Signal related uncertainties:

ISRFSR (initial state radiation vs. final state radiation).

@ Color reconnection (P2011 vs. P2011NOCR).

@ Hadronization (Alpgen+Herwig vs. Alpgen+Pythia).

@ Higher orders signal model (MC@NLO+Herwig vs. Alpgen+Herwig).
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Yiled table: I+jets

TABLE I. Expected number of events in the (+jets channel with 2, 3 or > 4 jets. The sum of signal and background agrees
well with the number of data events by construction; uncertainties are statistical and systematic added in quadrature (see Sec.
IX A4 for details). Events from tf dilepton decays are treated as background and denoted as “tf £¢”.

(+jets decay channel

Process e+ 2 jets e+ 3 jets e+ >4 jets L+ 2 jets 1+ 3 jets 1+ > 4 jets
Multijet 9160 + 2350 2266 + 550 4644120 1546+ 630 4184170 99440
Single top 471+ 60 129+ 20 DS 331+ 40 924+ 10 20+ 3
Wip + jets 37937 + 135° 5544+ 209 850+ 39 32701+ &55° 5313+ 209 835+ 32
(W ez + Wbb)+jets 6020 + 1999 1502+ 239 320+ 59 4998 + $79, 1391+ 239 315+ 2§
Z/~* Ip+iets 2031+ 400 390+ 80 57+ 10 2557+ 500 422+ 80 49410
(Z/~*ce+ Z/y" bb)+jets 369+ 7 114+ 20 2+ 5 185+ 100 120+ 20 21+ 5
Diboson 1926+ 140 338+ 20 524+ 5 1417+ 100 249+ 20 40+ 5
tt, 00 566+ 30 182+ 10 31+ 5 345+ 20 118+ 10 224 5
> bknd 5847942000 10465 + 650 1834 + 140 14381 + 1650 8123 + 350 1402 + 80
tt, (+jets 669+ 30 1460+ 70 1177+ 60 303+ 20 1002+ 50 909 + 50
3 (sig + bknd) 59148 42000 11925 + 650 3011 + 140 44773 4 1650 9125 + 350 2310+ 80
Data 59122 11905 3007 14736 9098 2325
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Yiled table: dilepton

TABLE II. Expected number of events in the ee+ > 2 jets, pp+ > 2 jets, ey + 1 jets and ep+ > 2 jets channels due to each
process; uncertainties are statistical and systematic added in quadrature (see Sec. IX A 4 for details).

dilepton decay channel

Process ce+ > 2 jets Jup4 > 2 jets e+ 1 jets ep+ > 2 jets
Multijet 57+ 09 70+ 33 28.3+88 325+ 14
Z/y* — Ul+jets 66.6 4179 107.6 £22:3 74.6 £ 128 57.5+13%
Diboson 99+ 23 126+ 25 385+45 147437
S bknd 822+ 18 1722+ 22 141.4+18 104.7£15
tt, 00 107.7+ 15 1015+ 12 86.5+ 11 313.7438
3 (sig + bknd) 190+ 23 220+ 25 228 4+ 21 418+ 42
Data 215 242 236 465

R DS
S
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Correlation between I+jets and dilepton (1)

Systematic names in  Systematic names in

Systematic names in

source I+jets dilepton combination N-1test  Corr
b fragmentation bftag_sys bfrag_sys b_quark_rnodeling 1
B-tagging bTag_sys bTag_sys bTag
C-tagging cTag_sys e e

Calor recannection

Data Quality rermoves bad events
Diboson cross-section
dZ(lepton, PY)

Fake & signal eff uncertainty
Fake & signal eff uncertainty
Fake & signal eff uncertainty
Fake & signal eff uncertainty
Fake & signal eff uncertainty
Hadronization model
ISRFER

Jet energy resolution

Jet enetgy scale

Jet identification

Lepton ID

Lepton Momenturm

Lepton Mormenturn

colorRecon_sys
eventdo_sys
diboson_xsec_sys
epsQCDsiy_elec_sys
epsQCDsig_tuon_sys

AH_vs_AP_hadro_sys
A _isr_fsr_sys
JER_sys

JES_sys

JetlD_sys

lepid_sys

Li_sys

colorRecon_sys
eventdg_sys
diboson_xsec_sys
dz_sys

mu_fake_stat_sys
arm_fake_stat_sys
mu_fake_rate_sys
AH_vs_AP_hadro_sys
A, isr_fsr_sys
JER_sys

JES sys

JetlD_sys

lepid_sys

muon_res_sys

Color_reconnection
DC_event_selection
Diboson_cross_section
dZ_lepton__PY_

Fit_statistical_error
Fit_statistical_error
Fake_rnuon_rate
AlpgenHerwig

ISR_FSR

JER

JES

JetlD
Electron_ID__cedification_

Muon_rmamentum_resolution

Lepton Momentum EIMES_SYS Electron_energy_scale
Lepton Momenturm e BIMIIES_SYS Electron_energy_resolution
Light-tagging [Tay_sys [Tag_sys ITag

Luminogity Lurmi_sys Lurni_sys Lurninosity

T — S o N B B S SN Sy
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Correlation between I+jets and dilepton (2)

Systematic hames in Systematic hames in Systematic names in
source I+jets dilepton combination N-1 test  Corr
MC BR uncertainty (FDG) MCER_sys MCBR_sys _Wtoellnu__branching_ratio 1
MC statistics dilepton_mecstat_sys MC_statistics 1
Muan 1D rmuohid_sys ruonid_sys Muon_ID 1
huon isolation muon_iso_sys muon_iso_sys Muon_isolation 1
huon Track muon_trk_sys muon_trk_sys duon_track 1
Opposite charge emcharge_missid_sys Electron_charge_rissid 1]
Opposite charge mucharge_rnissid_sys Muon_charge_rmissid 1]
FDF pdf pdf pdf 1
Sample dependent corrs SDC_sys SDC_sys SFPR 1
Signal modeling MH_vs_AH_signal_sys MH_vs_AH_signal_sys MAC athLOHe rwig 1
Single Top cross-section stop_xsec_sys e 1]
t-quark mass dependence e - e -
taggability tayga_sys tagga_sys taggability 1
Trigger efficency TriggEff_sys e 1]
Trigger efficency trig_diem_sys Trigger_EmML 1]
Trigger efficency trig_dimu_sys Trigger_EMMU o
Trigger efficency trig_ermmu_sys Trigger_EniL 1]
ertex confirmation VC_SYS WC_EYS i 1
\whf SF Whi_Zjb_sys i
whf SF Whi b sys i
i SF Whi_djb_sys 0
Wl SF Wlp_2jbsys 1]
Wip SF Wip_3jb_sys o
Wip SF Wip_4jb_sys e = o
Z & WY pT reweighting Zwpt_sy s Zwpt_sys I_p_T_ reweighting 1
I crogs-gection Z_KSEC_SYS Z_XEEC_SYE I_cross_section 1
z vertex reweighting 2vtxREW sys ? 7 1
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Xsec calculation in I+jets - Sources of systematic uncertainties

Source of uncertainty Sotjorss Yo SYN 80, % S/ N
Modeling of signal
Alternative signal model +10 8§ +4 S
Hadronization +8 S +4 S
. . Color reconnection 2 S 2 S
@ Each source of systematic uncertainty ISR /FSR variation s 2 s
yields a modified discriminant PDF 7 N 1 N
distribution of the MVA topological (or  Modeiing of detector
MVA b_lD) method. Jet modeling & ID 18 s 13 S
b-jet modeling & ID =5 S +12 g
@ 50 different systematic uncertainties has  Lepton modeling & 1D +£35 5 6 N
been taken into account (list in backup).  Trigger efficiency £ N £ N
Luminosity +47 N +43 N
@ The pre-fit uncertainty in percent from  gample Composition
each source on the inclusive cross MC cross sections & BRs +09 N 13 N
section is given for the £ + jets and #¢ Z/W pr rewcighting 15 & =2 5
channel. Multijet contribution +23 S/N 15 S/N
Z/y" +jets scale factor +£25 S/N +2 S/N
W 4jets heavy flavor SF J_rég S/N n.a. n.a.
W +jets light parton SF +§'§ S/N n.a. n.a.
MC statistics n.a. n.a. +3 S/N

The o, measurement and nuisance parameter fit of MC to Data are performed using the
=) software package Collie (A Confidence Level Limit Evaluator, D@ note 5595)w

Co
975
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¢¢ discrimination by b-ID method

[72] -1 _ . .
-g 10° @ Be?p%;;?jets lzé_,";f;‘m @ jlead - the MVA value of the jet with
5 E wrE e B Dibecon highest MVA output value is used for
2 Z4j [ :
10 : oot discrimination.
F 3 (c) D0 9.7 fb! 2Indf=0.51
10 E . ea,:ng;_ztzjsts
E = B eu+ =1jets
F w
1€
(]
g 1'? iEIiI:i{}-£Tl
0.5 tl
0 100 200 300 400 500
Ge
e £ 8Lttt Hin
. . < +xi-1- I g
@ The shape of the ji€d mva_varlable allows & o.gll IR B EDN! Eli*“‘“
to distinguish between tt events 0 05
located at high output values and the ' jrax

most dominant Z/~* + jets background
located at low output values.

b DO
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Xsec calculation in I+jets - Sources of systematic uncertainties

Each source of systematic uncertainty
yields a modified discriminant
distribution of the MVA topological (or
MVA b-ID) method.

A log-likelihood profile fit of MC
templates to data using a nuisance
parameter for every source of systematic
uncertainty has been performed:

NC Nbins | o—Hij "sys 622
e R i _
L(S, b|A, 0)xm(0) = | | | | ,ul.jj X | | e Tk/°.
i=1 j=1 nij: k=1

50 different systematic uncertainties has
been taken into account (list in backup).

Source of uncertainty dcomb,, Pb
Signal modeling
Signal generator +0.17
Hadronization +0.25
Color reconnection +0.09
ISR/FSR variation +0.06
PDF +0.02
Detector modeling
Jet modeling & ID +0.04
b-jet modeling & 1D +0.23
Lepton modeling & ID +0.17
Trigger efficiency +0.16
Luminosity +0.27
Sample Composition
MC cross sections +0.09
Multijet contribution +0.10
Wjets scale factor +0.15
Z{~* +jets scale factor +0.12
MC statistics +0.02
Total systematic uncertainty (quadratic sum) +0.60
Total systematic uncertainty (central COLLIE) +0.55

The o, measurement and nuisance parameter fit of MC to Data are performed using the
software package Collie (A Confidence Level Limit Evaluator, D@ note 5595).

Py
%X@Q‘
S “;_7

Jiri Franc: Machine Learning in High Energy Physics

| SPMS 2018 | 34 |


http://www.cvut.cz/en
https://www-d0.fnal.gov/
http://www-d0.fnal.gov/d0dist/dist/packages/collie/devel/doc/CollieDocumentation.pdf

Backup

Inclusive Xsec Determination and Results
The results of the measurement:

in £ + jets decay channel when using the topological method is
o = 7.3340.14 (stat.) 7021 (syst.) pb,
with a relative total uncertainty of 9.2%.
in £¢ decay channel using the MVA b-jet method is
o = 7.58 4 0.35 (stat.) 7023 (syst.) pb,
with a relative total uncertainty of 9.6%.
In the combination of £+ jets and ¢¢ channels using the topological and MVA b-jet method:
o = 7.26 +0.13 (stat.) T32) (syst.) pb,
with a relative total uncertainty of 7.6%.

@ ;gé/g{eory prediction of o uncertainty is ~ 3.5% for Tevatron 1.96 TeV (Czakon, et al.).

A
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Backup
Xsec calculation for different mass

@ Extraction of the top quark mass by

. he inclusi il . Top quark mass [GeV] Cross section o(tf) [pb
using t.e inclusive tt cross section as =0 970 1 0.16 (stat.) °0- S
a function of the top quark MC mass. 160 8.25 % 0.14 (stat.) T062
. s 165 7.46 + 0.13 (stat.) o 55
e A CL.JbIC fit to the individual cross 170 7,55  0.13 (stat ) 053
section measurements at various 172.5 7.26 4 0.12 (stat.) 027
mass points has been provided for 175 7.28 4 0.12 (stat.) t07
QL 0.53
the measured dependency. 180 6.86 £0.12 (stat.) - |
185 6.50 + 0.11 (stat.) T3 (syst.)
@ Comparison of the top quark mass 190 6.70 £ 0.11 (stat.) "% 32’ (syst.)

dependence of the inclusive tf cross
section with the expected dependency

@ The precision is 1.9% and represents the
in NNLO pQCD calculation top++. precision | ’ P

most precise determination of the top
quark pole mass from the inclusive tf

Pole mass of the Top Quark: :
cross section at the Tevatron.

m; = 172.8 + 1.1(theo.) 33 (exp.) GeV

QU= 504
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Backup
Xsec calculation for different mass

g 125 D0 9.7 fb'

@ Extraction of the top quark mass by = : § Measured o(pp— tt+X)
using the inclusive tf cross sectionas © 4qo — Measured dependence of ¢
a function of the top quark MC mass. — NNLONNLL

@ A cubic fit to the individual cross L/ s S N o S
section measurements at various i O o ST Sy S
mass points has been provided for 6- ey T
the measured dependency. r

@ Comparison of the top quark mass 4: L L L L
dependence of the inclusive tf cross 160 170 180 190
section with the expected dependency Top quark pole mass (GeV)

in NNLO pQCD calculation top++.
@ The precision is 1.9% and represents the
most precise determination of the top

me = 172.8 + 1.1(theo.) "33 (exp.) GeV quark p0|(.3 mass from the inclusive tf
cross section at the Tevatron.

Pole mass of the Top Quark:
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