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Introduction

U finite population of size N.

D - domains

Nd - population size, d = 1, . . . ,D

Variable of interest Y .

ydj value of Y in unit j from domain d

Target: to estimate additive parameters of Y in the D
domains/areas.
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Introduction

Our parameter of interest is

δd =
1

Nd

Nd∑

j=1

h(ydj ),

where h is a known measurable function.

For h(y) = y we obtain the area mean income

Y d =
1

Nd

Nd∑

j=1

ydj .

For h(y) = I (y < z) we obtain the area poverty proportions

pd =
1

Nd

Nd∑

j=1

I (ydj < z) .
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Introduction

We have a sample S ⊂ U of size n drawn from the whole
population.

Sd = S ∩ Ud sub-sample from domain d of size nd .

Direct estimates of δd = 1
Nd

∑Nd

j=1 h(ydj) are

δ̂dird =
1

N̂d

∑

j∈Sd

wdjh(ydj ), N̂d =
∑

j∈Sd

wdj

where wdj are the calibrated sampling weights.
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Introduction

Under SRS without replacement within each area,

wdj =
Nd

nd
, ∀j ∈ Sd ⇒ δ̂dird =

1

nd

∑

j∈Sd

h(ydj).

Problem: nd small for some d .

Small area/domain: subset of the population that is target
of inference and for which the direct estimator does not have
enough precision.

What does “enough precision” means? Some National
Statistical Offices (Spain) allow a maximum CV of 20%.
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Unit level gamma mixed model

The distribution of the target variable ydj , conditioned to the
random effect vd is for j = 1, . . . ,Nd

ydj |vd ∼ Gamma
(
νdj , αdj =

νdj

µdj

)
, νdj = adjϕ.

For the inverse of the mean parameter, we assume

g(µdj ) =
1

µdj

= xTdjβ + φvd ,

where
- {vd : d = 1, . . . ,D} are i.i.d. N(0, 1)

- ydj ’s are independent conditioned to v.

The vector of unknown parameters θ = (β, φ, ϕ) is estimated
by maximizing the Laplace approximation of the log-likelihood.
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Empirical best predictor

Our parameter of interest is

δd =
1

Nd

Nd∑

j=1

h(ydj ).

Let us denote by Sd and Rd the sets of sampled and
non-sampled individuals in domain d

Best predictor (BP) of δd is

δ̂d = δ̂d (θ) =
1

Nd

[ ∑

j∈Sd

h(ydj) +
∑

j∈Rd

Eθ[h(ydj )|ys ]
]
.

We would need a census file with all the x variables

Might be overcome if all the x variables are categorical
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Empirical best predictor

Suppose that the covariates are categorical such that

xdj ∈ {z1, . . . , zK}.

Then

∑

j∈Rd

Eθ[h(ydj )|ys ] =

K∑

k=1

wdkEθ [h(ydk)|ys ],

where ydk ∼ Gamma
(
νdk ,

νdk

µdk

)
,

µdk = µdk(θ) =
(
zTk β + φvd

)
−1

and
wdk = #{j ∈ Rd : xdj = zk}

is the size of the covariate class zk at Rd (available from
external data sources).
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Empirical best predictor

In this categorical setup the BP of δd is

δ̂BPd (θ) = Eθ [δd |ys ] =
1

Nd

[ ∑

j∈Sd

h(ydj)+

K∑

k=1

wdkEθ [h(ydk)|ys ]
]
,

where
Eθ [h(ydk)|ys ]

must be approximated numerically.

The EBP of δd is then obtained as

δ̂EBPd = δ̂BPd (θ̂) .
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PLUG-IN estimator

The plug-in estimator of δd is

δ̃d = δ̃d (θ̂) =
1

Nd

[ ∑

j∈Sd

h(ydj) +

K∑

k=1

wdkh(µ̃dk)
]
,

where

µ̃dk =
(
zTk β̂ + φ̂v̂d

)
−1

.

PROBLEM: for the function h(y) = I (y < z)

h(µ̃dk) = I (µ̃dk < z) = 0
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Marginal predictor

Let us consider the predicted marginal distribution of ydk , i.e. the
p.d.f. and d.f. of

Gamma

(
ν̂dk ,

ν̂dk

µ̃dk

)
.

The marginal predictor of δd is

δ̂MAR
d =

1

Nd

[ ∑

j∈Sd

h(ydj) +

K∑

k=1

wdkE [h(ydk)|ν̂dk , µ̃dk ]
]
.

For h(y) = y we get

E [h(ydk)|ν̂dk , µ̃dk ] =

∫
∞

0
yf (y |ν̂dk , µ̃dk) dy = µ̃dk .

For the function h(y) = I (y < z)

E [h(ydk)|ν̂dk , µ̃dk ] =

∫ z

0
f (y |ν̂dk , µ̃dk) dy = Fν̂dk ,µ̃dk

(z).
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Mean square error of predictors

Bootstrap estimator of MSE:

1) Fit the model to the sample and calculate θ̂.

2) Repeat B times (b = 1, . . . ,B):

a) Generate bootstrap population from the assumed model with
the estimated θ̂

b) Calculate the true quantity δ
∗(b)
d

c) Extract bootstrap sample, calculate θ̂
∗(b)

and the predictor

δ̂
∗(b)
d .

3) Output:

mse∗(µ̂d ) =
1

B

B∑

b=1

(
δ̂
∗(b)
d − δ

∗(b)
d

)2
.
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Simulation experiment

Target: to investigate the behaviour of the EBP and Marginal
predictor.

Population generation

Take D = 30, Nd = 1000 and nd ∈ {25, 50, 75, 100},

For d = 1, . . . ,D and j = 1, . . . ,Nd generate regressors

(xdj1, xdj2) ∈ {(0, 0), (0, 1), (1, 0)}

with probabilities equal to 0.3, 0.2 and 0.5, respectively.

It may represent belonging of the concrete individuum to one
of three possible classes (e.g. inactive, unemployed and
employed)
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Simulation experiment

Take β = (β0, β1, β2) = (0.8,−0.15, 0.2), φ = 0.1 and
ϕ = 2.5

Generate vd ∼ N(0, 1), d = 1, . . . ,D

Generate the target variable as follows:

ydj ∼ Gamma

(
νdj ,

νdj

µdj

)
,

where

µdj = (β0 + xdj1β1 + xdj2β2 + φvd )
−1, νdj = adjϕ.
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Simulation experiment

Steps of the simulation are:
1. Repeat K = 1000 times (k = 1, . . . ,K )

1.1. Generate the population as described.

1.2. Calculate the true values

p
(k)
d =

1

Nd

Nd∑

j=1

I
(
y
(k)
dj < z

)

1.3. Select a simple random sample Sd (without replacement) of
size nd .

1.4. Calculate:
X EBP X MAR

2. Output: for each p̂d ∈ {EBP ,MAR}

Bd =
1

K

K∑

k=1

(p̂
(k)
d − p

(k)
d ), Ed =

1

K

K∑

k=1

(p̂
(k)
d − p

(k)
d )2.
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Simulation experiment
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Figure 1. Boxplots of empirical biases Bd for EBP and MAR of
proportions.
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Simulation experiment
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Figure 2. Boxplots of empirical MSEs Ed for EBP and MAR of
proportions .
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Simulation experiment
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Figure 3. Relative biases of MSE estimators of MAR predictors for
poverty proportions. Case D = 30, nd = 50

19 / 30



Simulation experiment

25 50 100 200 300 400

0.
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35
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Figure 4. Relative root-MSEs of MSE estimators of MAR
predictors for poverty proportions. Case D = 30, nd = 50
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Application to real data

Data from 2013 Spanish Living Conditions Survey (SLCS) in the
Autonomous Community of Valencia

We are interested in estimating the domain poverty proportions in
2013

We consider D = 26 domains, comarcas (counties) appearing in
the sample

Total sample size: n = 2 492 (SLCS 2013)

Smallest area: 10 records

Largest area: 405 records

Population size: N = 4 877 512

Auxiliary agregated data (totals of covariate patterns) are taken
from SLFS 2013
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Application to real data

SLCS provides information regarding the household income
received during the last year

Equivalent personal income
- is calculated in order to take into account scale
economies in households

- it is assigned to each member of the household
(denoted as ydj).

The poverty risk is the proportion of people with equivalent
personal income below the poverty threshold.

E.g. the 2013 Valencia poverty threshold is z = 6999.6 (in
EUR).
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Application to real data

The model for personal income (in 10 000 EUR):

We assume that for d = 1, . . . ,D, j = 1, . . . ,Nd ,

ydj |vd ∼ Gamma
(
νdj , adj =

νdj

µdj

)
,

where vd are i.i.d. N(0, 1), νdj = adjϕ and

g(µdj ) =
1

µdj

= β0 + β1Employeddj + β2Unemployeddj + φvd

estimate standard error p-value

β0 0.775 0.0132 < 2E-16
β1 -0.141 0.0157 < 2E-16
β2 0.140 0.0300 3.09E-06
φ 0.1113 0.0112 < 2E-16
ϕ 2.4646 0.0675 < 2E-16

Table 1: Estimates of regression parameters.
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Application to real data
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Figure 5. Plot of deviance residuals with respect to fitted values.
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Introduction and the real data set
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Figure 6. Q-Q plot of the predicted values of vd .
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Application to real data

Molina-Rao (CJS 2010) model:

Let us consider the log transformation of data

zdj = log(ydj + c)

and the nested error regression model

zdj = xTdjβ + ud + edj ,

where ud ∼ N(0, σ2
u) and edj ∼ N(0, σ2

e ).

r2MolRao =
D∑

d=1

nd∑

j=1

(ydj − (exp(ẑdj)− 1))2 = 1938.30,

r2Gamma =
D∑

d=1

nd∑

j=1

(ydj − µ̂dj)
2 = 1897.35.
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Application to real data
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Figure 7. Marginal and Direct poverty proportions estimates.
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Application to real data
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Figure 8. Estimated MSEs of poverty proportions estimates.
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Conclusions:

The proposed model and marginal predictor is applicable to
small area estimation real data problems

Marginal predictors can increase precision of the direct
estimators
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Thank you for your attention!!!
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