An application of gamma mixed models to small area estimation

Tomáś Hobza

Department of Mathematics
Czech Technical University in Prague, Czech Republic
Based on joined work with
Domingo Morales and Yolanda Marhuenda
University of Miguel Hernández, Elche, Spain

SPMS2018, 22.6.2018, Dobřichovice

Outline

(1) Introduction
(2) Unit level gamma mixed model
(3) Simulation experiment
(4) Application to real data
(5) Conclusions

Introduction

- U finite population of size N.
- D-domains
- N_{d} - population size, $\quad d=1, \ldots, D$
- Variable of interest Y.
- $y_{d j}$ value of Y in unit j from domain d
- Target: to estimate additive parameters of Y in the D domains/areas.

Introduction

- U finite population of size N.
- D-domains
- N_{d} - population size, $\quad d=1, \ldots, D$
- Variable of interest Y.
- $y_{d j}$ value of Y in unit j from domain d
- Target: to estimate additive parameters of Y in the D domains/areas.

Introduction

- Our parameter of interest is

$$
\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)
$$

where h is a known measurable function.

- For $h(y)=y$ we obtain the area mean income

$$
\bar{Y}_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} y_{d j}
$$

- For $h(y)=I(y<z)$ we obtain the area poverty proportions

$$
p_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} I\left(y_{d j}<z\right)
$$

Introduction

- We have a sample $S \subset U$ of size n drawn from the whole population.
- $S_{d}=S \cap U_{d}$ sub-sample from domain d of size n_{d}.

Direct estimates of $\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)$ are

where $w_{d j}$ are the calibrated sampling weights.

Introduction

- We have a sample $S \subset U$ of size n drawn from the whole population.
- $S_{d}=S \cap U_{d}$ sub-sample from domain d of size n_{d}.

Direct estimates of $\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)$ are

$$
\widehat{\delta}_{d}^{d i r}=\frac{1}{\widehat{N}_{d}} \sum_{j \in S_{d}} w_{d j} h\left(y_{d j}\right), \quad \widehat{N}_{d}=\sum_{j \in S_{d}} w_{d j}
$$

where $w_{d j}$ are the calibrated sampling weights.

Introduction

- Under SRS without replacement within each area,

$$
w_{d j}=\frac{N_{d}}{n_{d}}, \forall j \in S_{d} \quad \Rightarrow \quad \widehat{\delta}_{d}^{d i r}=\frac{1}{n_{d}} \sum_{j \in S_{d}} h\left(y_{d j}\right)
$$

- Problem: n_{d} small for some d.

Introduction

- Under SRS without replacement within each area,

$$
w_{d j}=\frac{N_{d}}{n_{d}}, \forall j \in S_{d} \quad \Rightarrow \quad \widehat{\delta}_{d}^{d i r}=\frac{1}{n_{d}} \sum_{j \in S_{d}} h\left(y_{d j}\right)
$$

- Problem: n_{d} small for some d.
- Small area/domain: subset of the population that is target of inference and for which the direct estimator does not have enough precision.

Introduction

- Under SRS without replacement within each area,

$$
w_{d j}=\frac{N_{d}}{n_{d}}, \forall j \in S_{d} \quad \Rightarrow \quad \widehat{\delta}_{d}^{d i r}=\frac{1}{n_{d}} \sum_{j \in S_{d}} h\left(y_{d j}\right)
$$

- Problem: n_{d} small for some d.
- Small area/domain: subset of the population that is target of inference and for which the direct estimator does not have enough precision.
- What does "enough precision" means? Some National Statistical Offices (Spain) allow a maximum CV of 20%.

Unit level gamma mixed model

- The distribution of the target variable $y_{d j}$, conditioned to the random effect v_{d} is for $j=1, \ldots, N_{d}$

$$
\left.y_{d j}\right|_{v_{d}} \sim \operatorname{Gamma}\left(\nu_{d j}, \alpha_{d j}=\frac{\nu_{d j}}{\mu_{d j}}\right), \quad \nu_{d j}=a_{d j} \varphi
$$

- For the inverse of the mean parameter, we assume

$$
g\left(\mu_{d j}\right)=\frac{1}{\mu_{d j}}=x_{d j}^{T} \beta+\phi v_{d}
$$

where

$$
\begin{aligned}
& \left\{v_{d}: d=1, \ldots, D\right\} \text { are i.i.d. } N(0,1) \\
& y_{d j} \text { 's are independent conditioned to } v .
\end{aligned}
$$

- The vector of unknown parameters $\boldsymbol{\theta}=(\boldsymbol{\beta}, \phi, \varphi)$ is estimated by maximizing the Laplace approximation of the log-likelihood.

Unit level gamma mixed model

- The distribution of the target variable $y_{d j}$, conditioned to the random effect v_{d} is for $j=1, \ldots, N_{d}$

$$
\left.y_{d j}\right|_{v_{d}} \sim \operatorname{Gamma}\left(\nu_{d j}, \alpha_{d j}=\frac{\nu_{d j}}{\mu_{d j}}\right), \quad \nu_{d j}=a_{d j} \varphi
$$

- For the inverse of the mean parameter, we assume

$$
g\left(\mu_{d j}\right)=\frac{1}{\mu_{d j}}=\mathbf{x}_{d j}^{T} \boldsymbol{\beta}+\phi v_{d}
$$

where

- $\left\{v_{d}: d=1, \ldots, D\right\}$ are i.i.d. $N(0,1)$
- $y_{d j}$'s are independent conditioned to \mathbf{v}.
- The vector of unknown parameters $\boldsymbol{\theta}=(\boldsymbol{\beta}, \phi, \varphi)$ is estimated by maximizing the Laplace approximation of the log-likelihood.

Unit level gamma mixed model

- The distribution of the target variable $y_{d j}$, conditioned to the random effect v_{d} is for $j=1, \ldots, N_{d}$

$$
\left.y_{d j}\right|_{v_{d}} \sim \operatorname{Gamma}\left(\nu_{d j}, \alpha_{d j}=\frac{\nu_{d j}}{\mu_{d j}}\right), \quad \nu_{d j}=a_{d j} \varphi
$$

- For the inverse of the mean parameter, we assume

$$
g\left(\mu_{d j}\right)=\frac{1}{\mu_{d j}}=\mathbf{x}_{d j}^{T} \boldsymbol{\beta}+\phi v_{d}
$$

where

- $\left\{v_{d}: d=1, \ldots, D\right\}$ are i.i.d. $N(0,1)$
- $y_{d j}$'s are independent conditioned to \mathbf{v}.
- The vector of unknown parameters $\boldsymbol{\theta}=(\boldsymbol{\beta}, \phi, \varphi)$ is estimated by maximizing the Laplace approximation of the log-likelihood.

Empirical best predictor

- Our parameter of interest is

$$
\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)
$$

- Let us denote by S_{d} and R_{d} the sets of sampled and non-sampled individuals in domain d
- Best predictor (BP) of δ_{d} is

- We would need a census file with all the \mathbf{x} variables
- Might be overcome if all the \mathbf{x} variables are categorical

Empirical best predictor

- Our parameter of interest is

$$
\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)
$$

- Let us denote by S_{d} and R_{d} the sets of sampled and non-sampled individuals in domain d
- Best predictor (BP) of δ_{d} is

$$
\hat{\delta}_{d}=\hat{\delta}_{d}(\boldsymbol{\theta})=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{j \in R_{d}} E_{\boldsymbol{\theta}}\left[h\left(y_{d j}\right) \mid \mathbf{y}_{s}\right]\right] .
$$

- We would need a census file with all the \mathbf{x} variables
- Might be overcome if all the \mathbf{x} variables are categorical

Empirical best predictor

- Our parameter of interest is

$$
\delta_{d}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} h\left(y_{d j}\right)
$$

- Let us denote by S_{d} and R_{d} the sets of sampled and non-sampled individuals in domain d
- Best predictor (BP) of δ_{d} is

$$
\hat{\delta}_{d}=\hat{\delta}_{d}(\boldsymbol{\theta})=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{j \in R_{d}} E_{\boldsymbol{\theta}}\left[h\left(y_{d j}\right) \mid \mathbf{y}_{s}\right]\right] .
$$

- We would need a census file with all the \mathbf{x} variables
- Might be overcome if all the \mathbf{x} variables are categorical

Empirical best predictor

- Suppose that the covariates are categorical such that

$$
\mathbf{x}_{d j} \in\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{K}\right\} .
$$

- Then

where $y_{d k} \sim \operatorname{Gamma}\left(\nu_{d k}, \frac{\nu_{d k}}{\mu_{d k}}\right)$

$$
\mu_{d k}=\mu_{d k}(\theta)=\left(z_{k}^{\top} \beta+\phi v_{d}\right)^{-1}
$$

and

$$
w_{d k}=\#\left\{j \in R_{d}: \mathbf{x}_{d j}=\mathbf{z}_{k}\right\}
$$

is the size of the covariate class \mathbf{z}_{k} at R_{d} (available from external data sources).

Empirical best predictor

- Suppose that the covariates are categorical such that

$$
\mathbf{x}_{d j} \in\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{K}\right\}
$$

- Then

$$
\sum_{j \in R_{d}} E_{\boldsymbol{\theta}}\left[h\left(y_{d j}\right) \mid \mathbf{y}_{s}\right]=\sum_{k=1}^{K} w_{d k} E_{\boldsymbol{\theta}}\left[h\left(y_{d k}\right) \mid \mathbf{y}_{s}\right]
$$

where $y_{d k} \sim \operatorname{Gamma}\left(\nu_{d k}, \frac{\nu_{d k}}{\mu_{d k}}\right)$,

$$
\mu_{d k}=\mu_{d k}(\boldsymbol{\theta})=\left(\mathbf{z}_{k}^{T} \boldsymbol{\beta}+\phi v_{d}\right)^{-1}
$$

and

$$
w_{d k}=\#\left\{j \in R_{d}: \mathbf{x}_{d j}=\mathbf{z}_{k}\right\}
$$

is the size of the covariate class \mathbf{z}_{k} at R_{d} (available from external data sources).

Empirical best predictor

- In this categorical setup the BP of δ_{d} is

$$
\hat{\delta}_{d}^{B P}(\boldsymbol{\theta})=E_{\boldsymbol{\theta}}\left[\delta_{d} \mid \mathbf{y}_{s}\right]=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} E_{\boldsymbol{\theta}}\left[h\left(y_{d k}\right) \mid \mathbf{y}_{s}\right]\right]
$$

where

$$
E_{\boldsymbol{\theta}}\left[h\left(y_{d k}\right) \mid \mathbf{y}_{s}\right]
$$

must be approximated numerically.

- The EBP of δ_{d} is then obtained as

Empirical best predictor

- In this categorical setup the BP of δ_{d} is

$$
\hat{\delta}_{d}^{B P}(\boldsymbol{\theta})=E_{\boldsymbol{\theta}}\left[\delta_{d} \mid \mathbf{y}_{s}\right]=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} E_{\boldsymbol{\theta}}\left[h\left(y_{d k}\right) \mid \mathbf{y}_{s}\right]\right]
$$

where

$$
E_{\boldsymbol{\theta}}\left[h\left(y_{d k}\right) \mid \mathbf{y}_{s}\right]
$$

must be approximated numerically.

- The EBP of δ_{d} is then obtained as

$$
\hat{\delta}_{d}^{E B P}=\hat{\delta}_{d}^{B P}(\hat{\boldsymbol{\theta}})
$$

PLUG-IN estimator

The plug-in estimator of δ_{d} is

$$
\tilde{\delta}_{d}=\tilde{\delta}_{d}(\hat{\boldsymbol{\theta}})=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} h\left(\tilde{\mu}_{d k}\right)\right]
$$

where

$$
\tilde{\mu}_{d k}=\left(\mathbf{z}_{k}^{T} \hat{\boldsymbol{\beta}}+\hat{\phi} \hat{v}_{d}\right)^{-1}
$$

- PROBLEM: for the function $h(y)=I(y<z)$

$$
h^{\prime}\left(\tilde{\mu}_{d k}\right)=1\left(\tilde{\mu}_{d k}<z\right)=0
$$

PLUG-IN estimator

The plug-in estimator of δ_{d} is

$$
\tilde{\delta}_{d}=\tilde{\delta}_{d}(\hat{\boldsymbol{\theta}})=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} h\left(\tilde{\mu}_{d k}\right)\right]
$$

where

$$
\tilde{\mu}_{d k}=\left(\mathbf{z}_{k}^{T} \hat{\boldsymbol{\beta}}+\hat{\phi} \hat{v}_{d}\right)^{-1}
$$

- PROBLEM: for the function $h(y)=I(y<z)$

$$
h\left(\tilde{\mu}_{d k}\right)=I\left(\tilde{\mu}_{d k}<z\right)=0
$$

Marginal predictor

Let us consider the predicted marginal distribution of $y_{d k}$, i.e. the p.d.f. and d.f. of

$$
\operatorname{Gamma}\left(\widehat{\nu}_{d k}, \frac{\widehat{\nu}_{d k}}{\tilde{\mu}_{d k}}\right) .
$$

The marginal predictor of δ_{d} is

$$
\hat{\delta}_{d}^{M A R}=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]\right] .
$$

- For $h(y)=y$ we get
$E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{\infty} y f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=\tilde{\mu}_{d k}$.
- For the function $h^{\prime}(y)=l^{\prime}(y<z)$
$E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{z} f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=F_{\hat{\nu}_{d k}, \tilde{\mu}_{d k}}(z)$.

Marginal predictor

Let us consider the predicted marginal distribution of $y_{d k}$, i.e. the p.d.f. and d.f. of

$$
\operatorname{Gamma}\left(\widehat{\nu}_{d k}, \frac{\widehat{\nu}_{d k}}{\tilde{\mu}_{d k}}\right) .
$$

The marginal predictor of δ_{d} is

$$
\hat{\delta}_{d}^{M A R}=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]\right] .
$$

- For $h(y)=y$ we get

$$
E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{\infty} y f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=\tilde{\mu}_{d k}
$$

- For the function $h(y)=I(y<z)$
$E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{z} f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=F_{\hat{\nu}_{d k}, \tilde{\mu}_{d k}}(z)$.

Marginal predictor

Let us consider the predicted marginal distribution of $y_{d k}$, i.e. the p.d.f. and d.f. of

$$
\operatorname{Gamma}\left(\widehat{\nu}_{d k}, \frac{\widehat{\nu}_{d k}}{\tilde{\mu}_{d k}}\right) .
$$

The marginal predictor of δ_{d} is

$$
\hat{\delta}_{d}^{M A R}=\frac{1}{N_{d}}\left[\sum_{j \in S_{d}} h\left(y_{d j}\right)+\sum_{k=1}^{K} w_{d k} E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]\right] .
$$

- For $h(y)=y$ we get

$$
E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{\infty} y f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=\tilde{\mu}_{d k}
$$

- For the function $h(y)=I(y<z)$

$$
E\left[h\left(y_{d k}\right) \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right]=\int_{0}^{z} f\left(y \mid \hat{\nu}_{d k}, \tilde{\mu}_{d k}\right) d y=F_{\hat{\nu}_{d k}, \tilde{\mu}_{d k}}(z)
$$

Mean square error of predictors

Bootstrap estimator of MSE:

1) Fit the model to the sample and calculate $\hat{\boldsymbol{\theta}}$.
2) Repeat B times $(b=1, \ldots, B)$:
a) Generate bootstrap population from the assumed model with the estimated $\hat{\boldsymbol{\theta}}$
b) Calculate the true quantity $\delta_{d}^{*(b)}$
c) Extract bootstrap sample, calculate $\hat{\boldsymbol{\theta}}^{*(b)}$ and the predictor $\hat{\delta}_{d}^{*(b)}$.
3) Output:

$$
m s e^{*}\left(\hat{\mu}_{d}\right)=\frac{1}{B} \sum_{b=1}^{B}\left(\hat{\delta}_{d}^{*(b)}-\delta_{d}^{*(b)}\right)^{2}
$$

Simulation experiment

Target: to investigate the behaviour of the EBP and Marginal predictor.

Population generation

- Take $D=30, N_{d}=1000$ and $n_{d} \in\{25,50,75,100\}$,
- For $d=1 \ldots, D$ and $j=1 \ldots N_{d}$ generate regressors

$$
\left(x_{d j 1}, x_{d j 2}\right) \in\{(0,0),(0,1),(1,0)\}
$$

with probabilities equal to $0.3,0.2$ and 0.5 , respectively.
It may renresent belonging of the concrete individuum to one
of three possible classes (e.g. inactive, unemployed and
employed)

Simulation experiment

Target: to investigate the behaviour of the EBP and Marginal predictor.

Population generation

- Take $D=30, N_{d}=1000$ and $n_{d} \in\{25,50,75,100\}$,
- For $d=1, \ldots, D$ and $j=1, \ldots, N_{d}$ generate regressors

$$
\left(x_{d j 1}, x_{d j 2}\right) \in\{(0,0),(0,1),(1,0)\}
$$

with probabilities equal to $0.3,0.2$ and 0.5 , respectively.
It may represent belonging of the concrete individuum to one of three possible classes (e.g. inactive, unemployed and employed)

Simulation experiment

- Take $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=(0.8,-0.15,0.2), \phi=0.1$ and $\varphi=2.5$
- Generate $v_{d} \sim N(0,1), d=1, \ldots, D$
- Generate the target variable as follows:

$$
y_{d j} \sim \operatorname{Gamma}\left(\nu_{d j}, \frac{\nu_{d j}}{\mu_{d j}}\right),
$$

where

$$
\mu_{d j}=\left(\beta_{0}+x_{d j 1} \beta_{1}+x_{d j 2} \beta_{2}+\phi v_{d}\right)^{-1}, \quad \nu_{d j}=a_{d j} \varphi
$$

Simulation experiment

Steps of the simulation are:

1. Repeat $K=1000$ times $(k=1, \ldots, K)$
1.1. Generate the population as described.
1.2. Calculate the true values

$$
p_{d}^{(k)}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} I\left(y_{d j}^{(k)}<z\right)
$$

1.3. Select a simple random sample S_{d} (without replacement) of size n_{d}.
1.4. Calculate:
\checkmark EBP \checkmark MAR
2. Output: for each $\widehat{p}_{d} \in\{E B P, M A R\}$

Simulation experiment

Steps of the simulation are:

1. Repeat $K=1000$ times $(k=1, \ldots, K)$
1.1. Generate the population as described.
1.2. Calculate the true values

$$
p_{d}^{(k)}=\frac{1}{N_{d}} \sum_{j=1}^{N_{d}} I\left(y_{d j}^{(k)}<z\right)
$$

1.3. Select a simple random sample S_{d} (without replacement) of size n_{d}.
1.4. Calculate: \checkmark EBP \checkmark MAR
2. Output: for each $\widehat{p}_{d} \in\{E B P, M A R\}$

$$
B_{d}=\frac{1}{K} \sum_{k=1}^{K}\left(\hat{p}_{d}^{(k)}-p_{d}^{(k)}\right), \quad E_{d}=\frac{1}{K} \sum_{k=1}^{K}\left(\hat{p}_{d}^{(k)}-p_{d}^{(k)}\right)^{2}
$$

Simulation experiment

Figure 1. Boxplots of empirical biases B_{d} for EBP and MAR of proportions.

Simulation experiment

Figure 2. Boxplots of empirical MSEs E_{d} for EBP and MAR of proportions.

Simulation experiment

Estimated relative biases mse(p0)

Figure 3. Relative biases of MSE estimators of MAR predictors for poverty proportions. Case $D=30, n_{d}=50$

Simulation experiment

Figure 4. Relative root-MSEs of MSE estimators of MAR predictors for poverty proportions. Case $D=30, n_{d}=50$

Application to real data

Data from 2013 Spanish Living Conditions Survey (SLCS) in the Autonomous Community of Valencia

We are interested in estimating the domain poverty proportions in 2013

We consider $D=26$ domains, comarcas (counties) appearing in the sample

Total sample size: $n=2492$
Smallest area: 10 records
Largest area: 105 records
Population size: $N=4877512$
Auxiliary agregated data (totals of covariate patterns) are taken from SLFS 2013

Application to real data

Data from 2013 Spanish Living Conditions Survey (SLCS) in the Autonomous Community of Valencia

We are interested in estimating the domain poverty proportions in 2013

We consider $D=26$ domains, comarcas (counties) appearing in the sample

Total sample size: $n=2492$
(SLCS 2013)
Smallest area: 10 records
Largest area: 405 records
Population size: $N=4877512$
Auxiliary agregated data (totals of covariate patterns) are taken from SLFS 2013

Application to real data

- SLCS provides information regarding the household income received during the last year
- Equivalent personal income
- is calculated in order to take into account scale economies in households
- it is assigned to each member of the household (denoted as $y_{d j}$).
- The poverty risk is the proportion of people with equivalent personal income below the poverty threshold.
E.g. the 2013 Valencia poverty threshold is $z=6999.6$ (in EUR).

Application to real data

The model for personal income (in 10000 EUR):

We assume that for $d=1, \ldots, D, j=1, \ldots, N_{d}$,

$$
\left.y_{d j}\right|_{v_{d}} \sim \operatorname{Gamma}\left(\nu_{d j}, a_{d j}=\frac{\nu_{d j}}{\mu_{d j}}\right)
$$

where v_{d} are i.i.d. $N(0,1), \nu_{d j}=a_{d j} \varphi$ and

$$
g\left(\mu_{d j}\right)=\frac{1}{\mu_{d j}}=\beta_{0}+\beta_{1} \text { Employed }_{d j}+\beta_{2} \text { Unemployed }_{d j}+\phi v_{d}
$$

Table 1: Estimates of regression parameters.

Application to real data

The model for personal income (in 10000 EUR):

We assume that for $d=1, \ldots, D, j=1, \ldots, N_{d}$,

$$
\left.y_{d j}\right|_{v_{d}} \sim \operatorname{Gamma}\left(\nu_{d j}, a_{d j}=\frac{\nu_{d j}}{\mu_{d j}}\right)
$$

where v_{d} are i.i.d. $N(0,1), \nu_{d j}=a_{d j} \varphi$ and

$$
g\left(\mu_{d j}\right)=\frac{1}{\mu_{d j}}=\beta_{0}+\beta_{1} \text { Employed }_{d j}+\beta_{2} \text { Unemployed }_{d j}+\phi v_{d}
$$

	estimate	standard error	p-value
β_{0}	0.775	0.0132	$<2 \mathrm{E}-16$
β_{1}	-0.141	0.0157	$<2 \mathrm{E}-16$
β_{2}	0.140	0.0300	$3.09 \mathrm{E}-06$
ϕ	0.1113	0.0112	$<2 \mathrm{E}-16$
φ	2.4646	0.0675	$<2 \mathrm{E}-16$

Table 1: Estimates of regression parameters.

Application to real data

Figure 5. Plot of deviance residuals with respect to fitted values.

Introduction and the real data set

Model 2

Figure 6. Q-Q plot of the predicted values of v_{d}.

Application to real data

Molina-Rao (CJS 2010) model:

- Let us consider the log transformation of data

$$
z_{d j}=\log \left(y_{d j}+c\right)
$$

and the nested error regression model

$$
z_{d j}=\mathbf{x}_{d j}^{T} \boldsymbol{\beta}+u_{d}+e_{d j}
$$

where $u_{d} \sim N\left(0, \sigma_{u}^{2}\right)$ and $e_{d j} \sim N\left(0, \sigma_{e}^{2}\right)$.

Application to real data

Molina-Rao (CJS 2010) model:

- Let us consider the log transformation of data

$$
z_{d j}=\log \left(y_{d j}+c\right)
$$

and the nested error regression model

$$
z_{d j}=\mathbf{x}_{d j}^{T} \boldsymbol{\beta}+u_{d}+e_{d j}
$$

where $u_{d} \sim N\left(0, \sigma_{u}^{2}\right)$ and $e_{d j} \sim N\left(0, \sigma_{e}^{2}\right)$.
-

$$
\begin{gathered}
r_{\text {MoIRao }}^{2}=\sum_{d=1}^{D} \sum_{j=1}^{n_{d}}\left(y_{d j}-\left(\exp \left(\hat{z}_{d j}\right)-1\right)\right)^{2}=1938.30, \\
r_{\text {Gamma }}^{2}=\sum_{d=1}^{D} \sum_{j=1}^{n_{d}}\left(y_{d j}-\hat{\mu}_{d j}\right)^{2}=1897.35
\end{gathered}
$$

Application to real data

Figure 7. Marginal and Direct poverty proportions estimates.

Application to real data

Figure 8. Estimated MSEs of poverty proportions estimates.

Conclusions:

- The proposed model and marginal predictor is applicable to small area estimation real data problems
- Marginal predictors can increase precision of the direct estimators

Thank you for your attention!!!

