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U finite population of size N.

@ D - domains

Ny - population size, d=1,...,D

@ Variable of interest Y.

yd; value of Y in unit j from domain d

o Target: to estimate additive parameters of Y in the D
domains/areas.



@ Our parameter of interest is

where h is a known measurable function.
@ For h(y) = y we obtain the area mean income

o N
Ve, 2
j=1
@ For h(y) = I(y < z) we obtain the area poverty proportions
1
Pd = N—djz:;I(ydj < z).



@ We have a sample S C U of size n drawn from the whole
population.

® Sy = SN Uy sub-sample from domain d of size ny.



Introduction

@ We have a sample S C U of size n drawn from the whole
population.

@ Sy = 5N Uy sub-sample from domain d of size ny.

Direct estimates of 64 = Nid ZJ’-V:dl h(yqj) are

d ~
/r: E de de Nd: E Wqj

JESd JESy

where wy; are the calibrated sampling weights.
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@ Under SRS without replacement within each area,

Ny . 1
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Introduction

@ Under SRS without replacement within each area,

N _ ~di 1
Woj = n—d, VjeSy = 03 = - Z h(yq;)-
d djESd

o Problem: ny small for some d.

@ Small area/domain: subset of the population that is target
of inference and for which the direct estimator does not have
enough precision.

@ What does “enough precision” means? Some National
Statistical Offices (Spain) allow a maximum CV of 20%.
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@ The distribution of the target variable yg4;, conditioned to the

random effect vq is for j =1,..., Ny
Vdj
Ydjlvy ~ Gamma(vgj, o = ﬁ)’ Vi = adjp-
j



Unit level gamma mixed model
@ The distribution of the target variable yq;, conditioned to the
random effect vy is for j=1,... Ny

12N
Ydjlvy ~ Gamma(vgj, ag = —2)

5 Vdj = adjp-
Hdj

@ For the inverse of the mean parameter, we assume

1
g(pg) = — =x5B + dva,
Hdj

where
- {vg: d=1,...,D} areiid. N(0,1)

- yqj's are independent conditioned to v.
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Unit level gamma mixed model

@ The distribution of the target variable yq;, conditioned to the

random effect vy is for j=1,... Ny
_ Ydi _
ydj|vd ~ Gamma(l/dj, adj = 7 ), Vdj = adjgo.
dj

@ For the inverse of the mean parameter, we assume
1 T
g(pg) = — = X483 + ¢va,
Hdj

where
- {vg: d=1,...,D} areiid. N(0,1)

- yqj's are independent conditioned to v.

@ The vector of unknown parameters 8 = (3, ¢, ) is estimated
by maximizing the Laplace approximation of the log-likelihood.
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@ Our parameter of interest is

@ Let us denote by Sy and Ry the sets of sampled and
non-sampled individuals in domain d



Empirical best predictor

@ Our parameter of interest is

1 o

0q = No Z h(ya))-

j=t

@ Let us denote by Sy and Ry the sets of sampled and
non-sampled individuals in domain d

@ Best predictor (BP) of ¢4 is
N A 1
o = 8(0) = 5| 2 hlva) + D Eqlhlren)ly.]|

JESy JERy
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Empirical best predictor

@ Our parameter of interest is

Ny

1
0d = No Z h(yq;)-

j=t

@ Let us denote by Sy and Ry the sets of sampled and
non-sampled individuals in domain d

@ Best predictor (BP) of ¢4 is
N A 1
o = 8(0) = 5| 2 hlva) + D Eqlhlren)ly.]|

JESy JERy

@ We would need a census file with all the x variables

@ Might be overcome if all the x variables are categorical

8/30



@ Suppose that the covariates are categorical such that

Xdj € {Zl, R ,ZK}.
@ Then
K

Z E9 (yai)lys] Z deE9 (yar)lysls

J Rd k=1
where yq ~ Gamma < M)

T -1
ik = k(@) = <Zk B8+ ”Vd>

and

Wy = #{j € Rd D Xdj :Zk}
is the size of the covariate class z, at Ry (available from
external data sources).



Empirical best predictor

@ Suppose that the covariates are categorical such that

Xdj € {z1,...,2k}.

@ Then
K

Z Eglh(ya)lys] = Z wak Egh(yar)1ys]:

JERy k=1

where yq ~ Gamma (de, %),

-1
dk = pak(0) = (ZkTﬁ + (bvd)
and
Wak = #{Jj € Ry : Xqj = 2k}
is the size of the covariate class z, at Ry (available from
external data sources).
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@ In this categorical setup the BP of 44 is

K

587 (6) = Egloaly.] = 5[ 3 hva)+ > wak Eplh(va) Iy
JESy k=1

where
Eg[h(yai)lys]

must be approximated numerically.



Empirical best predictor

@ In this categorical setup the BP of §4 is

K

587 (6) = Egloaly.] = 5[ 3 hva)+ > wak Eplh(va) Iy
JESy k=1

where
Eg[h(yar)|ys]

must be approximated numerically.

@ The EBP of 4 is then obtained as
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The plug-in estimator of d4 is

K

g =04(0) = Nid [ > hla) + deh(ﬁdk)],

JESy k=1

where
~ T 5 N -1
figk = (Zk B+ ¢Vd) .



The plug-in estimator of d4 is

K
o . A 1 "
g = 04(0) = N [ Z h(ya) + deh(Ndk)]>
JESy k=1
where

~ T35 N -1
ude(Zk,@JrCﬁVd) .

@ PROBLEM: for the function h(y) = I(y < z)

h(fiak) = I(fiak < z) =0



Let us consider the predicted marginal distribution of ygx, i.e. the

p.d.f. and d.f. of
Gamma (ﬁdka ﬂ) .
Hdk

The marginal predictor of d4 is

K

o 1 Y

FMAR _ v [ 265: h(yq) + kE ) wdkE[h()’dk)Ide,udk]]
JESd =



Marginal predictor

Let us consider the predicted marginal distribution of yg, i.e. the

p.d.f. and d.f. of
Gamma <1//\dk7 ﬂ) .
Hdk

The marginal predictor of d4 is
K

o 1 Do i
5% = [ Ho) + D wer Elha) s o]
JESq k=1

@ For h(y) = y we get

o0
E[h(ydk)| Dk, frak] = / yE (Y|P fidk) dy = fiak-
0
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Marginal predictor

Let us consider the predicted marginal distribution of yg, i.e. the

p.d.f. and d.f. of
Gamma <1//\dk7 ﬂ) .
Hdk

The marginal predictor of d4 is
K

o 1 Do i
5% = [ Ho) + D wer Elha) s o]
JESq k=1

@ For h(y) = y we get
o0
ETh(yar)|Dek, frak] = / YE(y Dk, fiar) dy = fiak-
0
@ For the function h(y) = I(y < z)

ETh(ya)|Ddk, fdk] :/0 f(|Ddics Brdic) dy = Foyy jige (2)-
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Mean square error of predictors

Bootstrap estimator of MSE:

1) Fit the model to the sample and calculate 8.

2) Repeat B times (b=1,...,B):

a) Generate bootstrap population from the assumed model with
the estimated 6

b) Calculate the true quantity 5:,“’)

~x(b
c) Extract bootstrap sample, calculate 6 ®) and the predictor
5:(0),

3) Output:

o 5 *(b >|< 2
mse*(fig) = B Z ) .
b=1

13/30



Target: to investigate the behaviour of the EBP and Marginal
predictor.

Population generation
@ Take D =30, Ny = 1000 and ng € {25,50,75,100},

@ Ford=1,..., Dandj=1,..., Ny generate regressors

(xdj1: xgj2) € {(0,0),(0,1),(1,0)}

with probabilities equal to 0.3, 0.2 and 0.5, respectively.

It may represent belonging of the concrete individuum to one
of three possible classes (e.g. ) and

)



Simulation experiment

Target: to investigate the behaviour of the EBP and Marginal
predictor.

Population generation
@ Take D =30, Ny = 1000 and n4 € {25,50, 75,100},

@ Ford=1,...,D and j=1,..., Ny generate regressors

(xgj15 Xgj2) € {(0,0), (0, 1), (1,0)}

with probabilities equal to 0.3, 0.2 and 0.5, respectively.

It may represent belonging of the concrete individuum to one
of three possible classes (e.g. inactive, unemployed and
employed)
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e Take B = (o, 51, 62) = (0.8,—0.15,0.2), ¢ = 0.1 and
p=25

@ Generate vy ~ N(0,1), d=1,...,D

@ Generate the target variable as follows:

Vqj
Ydj ~ Gamma (l/dj, —) y
Hdj

where

fiaj = (Bo + xgj1B1 + Xgj2B2 + dva) T, v = agjp-



Simulation experiment

Steps of the simulation are:
1. Repeat K = 1000 times (k =1,...,K)
1.1. Generate the population as described.

1.2. Calculate the true values

k 1 K
Pg): N_Z/(yc(ﬁ) <Z>
d“
Jj=1
1.3. Select a simple random sample S; (without replacement) of
size ny.
1.4. Calculate:

v EBP v MAR
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Simulation experiment

Steps of the simulation are:
1. Repeat K = 1000 times (k =1,...,K)
1.1. Generate the population as described.

1.2. Calculate the true values
Ny

1
Py =2 (v§) <2)

Jj=1

1.3. Select a simple random sample S; (without replacement) of
size ny.

1.4. Calculate:
v EBP v MAR

2. Output: for each py € {EBP, MAR}

K K
~(k k 1 ~(k k
Ba= 1> (Y i) Ea= o> (B — pi).
k=1 k=1
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Simulation experiment
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Figure 1. Boxplots of empirical biases By for EBP and MAR of
proportions.
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Simulation experiment

Estimated relative biases mse(p0)
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Figure 3. Relative biases of MSE estimators of MAR predictors for
poverty proportions. Case D = 30, ngy = 50
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Simulation experiment

Estimated relative mean squared errors of mse(p0)
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Figure 4. Relative root-MSEs of MSE estimators of MAR
predictors for poverty proportions. Case D = 30, ngy = 50
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Data from 2013 Spanish Living Conditions Survey (SLCS) in the
Autonomous Community of Valencia

We are interested in estimating the domain poverty proportions in
2013



Application to real data

Data from 2013 Spanish Living Conditions Survey (SLCS) in the
Autonomous Community of Valencia

We are interested in estimating the domain poverty proportions in
2013

We consider D = 26 domains, comarcas (counties) appearing in
the sample

Total sample size: n = 2492 (SLCS 2013)

Smallest area: 10 records

Largest area: 405 records
Population size: N = 4877512

Auxiliary agregated data (totals of covariate patterns) are taken
from SLFS 2013
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Application to real data

@ SLCS provides information regarding the household income
received during the last year

@ Equivalent personal income
- is calculated in order to take into account scale
economies in households
- it is assigned to each member of the household
(denoted as yy;).

@ The poverty risk is the proportion of people with equivalent
personal income below the poverty threshold.

E.g. the 2013 Valencia poverty threshold is z = 6999.6 (in
EUR).
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Application to real data

The model for personal income (in 10000 EUR):
We assume that for d =1,...,D, j=1,... Ny,
2)

Ydjlvy ~ Gamma(ydj, aqj =
Hdj

)

where vy are i.i.d. N(0,1), vy = agjp and

1
g(pqj) = g Bo + B1Employedy; + B2Unemployed; + ¢vg
/)

23/30



Application to real data

The model for personal income (in 10000 EUR):

We assume that for d =1,...,D, j=1,... Ny,
ﬂ)

Ydjlvy ~ Gamma(ydj, aqj =
Hdj

)

where vy are i.i.d. N(0,1), vy = agjp and

1
g(pqj) = g Bo + B1Employedy; + B2Unemployed; + ¢vg

dj
estimate standard error p-value
Bo | 0.775 0.0132 < 2E-16
51| -0.141 0.0157 < 2E-16
B2 | 0.140 0.0300 3.09E-06
¢ | 0.1113 0.0112 < 2E-16
p | 2.4646 0.0675 < 2E-16

Table 1: Estimates of regression parameters.
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resid(., type = "deviance")

1.0 1.2 1.4 1.6 1.8 2.0
fitted(.)

Figure 5. Plot of deviance residuals with respect to fitted values.
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Model 2

Sample Quantiles
0
|

Theoretical Quantiles

Figure 6. Q-Q plot of the predicted values of vy.



Molina-Rao (CJS 2010) model:

@ Let us consider the log transformation of data
z4j = log(yqj + ¢)
and the nested error regression model
_ T
z4i = Xgi3 + ud + €dj;

where ug ~ N(0,02) and ey ~ N(0,02).



Application to real data
Molina-Rao (CJS 2010) model:
@ Let us consider the log transformation of data
z4; = log(yaj + €)
and the nested error regression model
Z4j = X;jﬁ+ ug + eqj,
where uy ~ N(0,02) and ey ~ N(0,02).

rMolRao ZZ Ydj — exp Zdj) - 1)) = 1938.30,
d=1 j=1

F&amma = ZZ Yo — figj)? = 1897.35.
d=1 j=1
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Figure 7. Marginal and Direct poverty proportions estimates.
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Figure 8. Estimated MSEs of poverty proportions estimates.




@ The proposed model and marginal predictor is applicable to
small area estimation real data problems

@ Marginal predictors can increase precision of the direct
estimators



Thank you for your attention!!!
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