Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	0

Identification of malicious Autonomous systems

Dominik Vít

Faculty of Nuclear Sciences and Physical Engineering CTu Prague

June 18, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

		MCMC	Detectors	References
Table of con	tents			

Autonomous systems

2 Time evolution

Autonomous systems		MCMC	Detectors	References
•0	000	000000	000000	
Autonomous	systems			

- a collection of IP prefixes under the control of single administrative entity
- currently around 60 000 ASes
- a unique number assigned to each AS
 - AS 2852 CESNET2
- BGP= Border Gateway Protocol

Figure: Diagram of ASes and BGP routers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	
Dataset				

AS number	company	flow	users	domains	upload	download	m. flow	m. upload	m. download
AS15169 Google	333	3,7e9	2.3e6	5.2e6	1.5e13	1.9e14	5.2e3	2.5e6	3.2e7
AS30633 Leaseweb	320	1.5e7	5.3e5	4.3e4	1.8e10	2.4e11	5.3e4	5.4e7	1.5e6
AS60592 GRANSY	97	9.9e3	3.9e2	5.7e2	1e7	6.6e7	3.1e3	1.9e3	5.6e3

・ロト ・四ト ・ヨト ・ヨト ・日・

Autonomous systems	Time evolution	MCMC	Detectors	References
	000			
Time evolution				

Why are we interested in evolution of ASes in time?

- Can they be considered static?
- If so, can we train a set of detectors on the training data?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• If they prove to be dynamic, can we determine how?

Autonomous systems	Time evolution	MCMC	Detectors	References
00	000	000000	000000	
Measured traffic	2			

Evolution of probability of malicious flows in the course of 10 months

- Significant fluctuation
- Often between zero and nonzero for a single AS
- 3 statistics:
 - Number of ASes with nonzero probability of malicious flows
 - Born rate ASes that changed the probability from zero to nonzero

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Churn rate - AS that fell to a zero probability in a given month

Autonomous systems	Time evolution	MCMC	Detectors	References
	000	000000	000000	

Figure: Evolution of the probability of malicious flows within 10 months

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Autonomous systems	Time evolution	MCMC	Detectors	References
OO	000	●00000	000000	O
Markov chain				

Is it possible to predict the state of an AS given the knowledge of a state in a previous time step? Markov property:

$$Pr(s_{t+1}|s_t, s_{t-1}, \dots, s_0) = Pr(s_{t+1}|s_t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Continuous state space
- Discretization by the order of magnitude
- Calculating the transition matrix
- Monte Carlo method simulations

Autonomous systems	Time evolution	MCMC	Detectors	References
OO		0●0000	000000	O
Transition matri	x			

- Discretization of states
- Ratio of ASes passing from the state $S_{i,j}$ to $S_{k,l}$ and the total AS count
- Exploits the fact, that there is a large amount of data in a single month, but only a few observed months

	0	1e-08	1e-07	1e-06	1e-05	0.0001	0.001	0.01	0.1	1
0	0.49761	0.014354	0.057416	0.1244	0.11005	0.066986	0.052632	0.047847	0.028708	0
1e-08	0.33333	0.16667	0.16667	0.16667	0	0.16667	0	0	0	0
1e-07	0.42553	0.06383	0.21277	0.19149	0.10638	0	0	0	0	0
1e-06	0.36264	0	0.12088	0.2967	0.18681	0.032967	0	0	0	0
1e-05	0.38462	0	0.021978	0.16484	0.32967	0.076923	0.021978	0	0	0
0.0001	0.37662	0	0.025974	0.051948	0.1039	0.35065	0.090909	0	0	0
0.001	0.32203	0	0	0	0	0.18644	0.38983	0.10169	0	0
0.01	0.36364	0	0	0	0.030303	0	0.18182	0.27273	0.15152	0
0.1	0.44444	0	0	0	0	0	0	0.18519	0.37037	0
1	0.66667	0	0	0	0	0	0	0	0	0.33333

Table: Transition matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Autonomous systems	Time evolution	MCMC	Detectors	References
OO		00●000	000000	O
Training dataset	t			

- Extending the training data from 3 to 9 months
- Validation on testing dataset using methods of Monte Carlo
- 1*e*5 of repetitions is sufficient as higher orders only improve accuracy incrementally

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Tolerance of ± 1 order
- Excluding ASes that probably were abuses (only 1 month of measured malicious traffic)

Autonomous systems	MCMC	Detectors	References
	000000	000000	

Figure: Prediction accuracy

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Autonomous systems	Time evolution	MCMC	Detectors	References
OO		0000●0	000000	O
MC of higher or	rders			

Markov chain of 2. order follows the property:

$$Pr(s_{t+1}|s_t, s_{t-1}, \ldots, s_0) = Pr(s_{t+1}|s_t, s_{t-1}).$$

We predict the future state based on the knowledge of 2 previous states. Transition matrix expands from 10×10 to 100×10 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

		MCMC	Detectors	References
00	000	00000	000000	
MCMC conclus	ion			

- Exploiting Markov chains partially describes AS behavior.
- They are not accurate enough to be used as standalone detectors.
- We cannot prove stationarity of ASes states, but we can see a raise in robustness of detectors with larger dataset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Detectors 00000

Characteristics of training data

Detectors

- For future application in malware connection detection
- Assign each AS an anomaly score
- In real time traffic the connection will be flagged as malicious based on the ASes it visited.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Autonomous systems	MCMC	Detectors	References
	000000	00000	

Figure: Relation of users and anomaly score

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ <

э

э

Autonomous systems		MCMC	Detectors	References
			00000	
Elementary of	detectors			

Figure: Relation of relative download and anomaly score

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	
Evaluating e	elementary dete	ectors		

ROC... Receiver Operating Characteristic

О

Figure: ROC for domains

AUC for each detector:

- companies AUC=0.88
- users AUC=0.90
- dommains AUC=0.90
- upload AUC=0.98
- download AUC=0.96

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	
Agregated de	etectors			

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 fPR

AUC= 0.944738

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: ROC for weighted average

Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	
Conclusion				

- Using AS reputation has a positive effect on malware detection
- Due to the small dataset we cannot prove time stationarity of ASes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Markov chains help understand their time evolution
- Detectors still exhibit high false positive rate

Autonomous systems		MCMC	Detectors	References
00	000	000000	000000	•
References				

- Antonakakis, Manos, et al. "Building a Dynamic Reputation System for DNS." USENIX security symposium. 2010.
- PETERKA, Jiří. Přednáška na MFF UK: Počítačové sítě [online]. [cit. 2017-04-12]. Dostupné z: http://www.earchiv.cz/l226/index.php3
- Receiver operating characteristic. In: Wikipedia [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2017-04-12]. Dostupné z: https://en.wikipedia.org/wiki/Receiver-operating-characteristic
- Giorgio Giacinto and Fabio Roli. Intrusion detection in computer networks by multiple classifier systems. in In Proc. of the 16th International Conference on Pattern Recognition (ICPR), Volume 2, Pages 390-393. IEEE press, 2002.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@