Conveners
Radiopharmaceuticals: RPH 1
- Kattesh Katti (University of Missouri)
- Ondřej Lebeda (Nuclear Physics Institute, Academy of Sciences of the Czech Republic)
Radiopharmaceuticals: RPH Poster
- There are no conveners in this block
A variety of different polymer micelles are applied in the clinic as nano-carriers for chemotherapy. For a safe and effective application, it is imperative to know how they behave in vivo. Here, we present a chelator-free method for radiolabeling of polymer micelles to enable in vivo biodistribution studies. The radiolabeling method is very simple and is achieved by just adding the...
The interrelationship of NF-κB and related signaling pathways involving NF-κB-related effector genes in adaptive radioresistance has attracted significant current interest toward the overall quest of developing more effective radiotherapeutic agents. Compelling evidence suggests that radiotherapy triggers several signaling pathways including NF-κB and related signaling vectors causing...
Radioisotope 68Ga is used for radiopharmaceuticals synthesis word wide and its application is increasing every year. 68Ge/68Ga generator are the main source of 68Ga for radiolabeled radiopharmaceuticals products such as 68Ga-DOTATOC and 68Ga-PSMA. The price of the generator is quite expensive and due to decaying of 68Ge it is necessary to buy a new one nearly every half year. Another...
Radionuclide therapy is a promising therapeutic modality for cancer treatment. Radionuclides are usually bound to conventional chelators such as DOTA and conjugated to a tumor-targeting agent to selectively kill tumor cells by locally delivering ionizing radiation while sparing healthy tissue. Holmium-166 (Ho-166, half-life=26.8 h) has been recently applied in radioembolization to treat...
Introduction
Radioembolization is a specific type of internal radiotherapy used to treat primary or metastatic hepatic tumors. The basis of this therapy is the intra-arterial insertion of microspheres containing beta radioactive yttrium in the vicinity of the tumor tissue. The aim of the work was carried out physical and biological experiments performed to determine radiometric parameters and...
Background: To enhance the therapeutic efficacy of radioimmunotherapy of cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumour is pretargeted with a modified monoclonal antibody that has affinity for both, tumour antigen and radiolabeled carrier. A big challenge in cancer treatment is the elimination of occult disseminated tumour cells,...
Targeted alpha particle therapy (TAT), which uses radionuclides emitting alpha particles is one of the promising possibilities for the treatment of a broad range of malignancies. A short range of alpha particles in soft tissues (approx. 50-100 μm) and high linear energy transfer (LET) allows to destroy tumor cells effectively. Precise targeting by appropriate carrier should ensure efficient...
Terbium-161 is one of the perspective radionuclides with a potential use in nuclear medicine thanks to its ideal energy of beta radiation (E$_\beta$$_{max}$ = 593 keV) and half-life (6,9 d). In addition, terbium-161 emits a significant amount of conversion and Auger electrons, which increases its potential therapeutic efficacy. Terbium-161 can be prepared as no carrier added by neutron...
PSMA (Prostate-Specific Membrane Antigen) is a transmembrane protein which is overexpressed in most cases of prostate cancer. Expression level of this protein has a strong correlation to the stage of the disease, which makes PSMA a very attractive target for radionuclide therapy of metastasized castration-resistant prostate cancer (mCRPC) [1]. One of the most promising radioligands for the...