13-18 May 2018
Casino Conference Centre
Europe/Prague timezone

Sulfonated calix-baskets for complexation of Barium and Radium

15 May 2018, 15:45
15m
Red Hall (Casino Conference Centre)

Red Hall

Casino Conference Centre

Reitenbergerova 4/95, Mariánské Lázně, Czech Republic
Verbal Radiopharmaceutical Chemistry, Labelled Compounds RPH 1

Speaker

Dr Constantin Mamat

Description

Understanding the coordination chemistry of the heavy group 2 metal chemistry, especially of barium as surrogate for radium, is mandatory not only for adiopharmaceutical applications of radium. This is from high importance since Radium-223 is the only approved therapeutic alpha-emitter (by EMA and FDA). Unfortunately, the applications are limited. To date, radium-223 is only in use as RaCl2 for the treatment of bone cancer metastases. To overcome this limitation, which is also true for other group 2 metals, special cage-like compounds have to be developed as ligands like sulfonated calix[4]crowns to stably bind the Ba2+ and Ra2+ to avoid a release in vivo. This will be the basis for a future application of heavy group 2 metals and not only of radium to treat other cancer entities than bone metastases. Ra2+ can then be included in radiopharmaceuticals which contain a chelator and a biologically active molecule part to find the tumor cell.
For this purpose, a series of modified calix[4]crown-6 derivatives was synthesized to chelate barium, which serves as non-radioactive surrogate for radium-223/-224. These calixcrowns were functionalized with sulfonate moieties including deprotonable groups. Furthermore, the corresponding barium complexes were synthesized. Stability constants of these complexes were measured using UV/Vis titration experiments to determine logK values. Further radiolabeling and extraction studies were performed with [133Ba]Ba2+ and [124Ra]Ra2+ to further characterize the binding affinity of calixcrowns.

Primary authors

Presentation Materials

There are no materials yet.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×