Conveners
RPH 1
- Ondřej Lebeda (Nuclear Physics Institute, Academy of Sciences of the Czech Republic)
- Constantin Mamat (HZDR)
The prostate-specific membrane antigen (PSMA) has emerged as an attractive target for imaging and therapy of prostate cancer. Despite many advances in the past years, the treatment of metastatic castration-resistant prostate cancer (mCRPC) still remains challenging. The aim of this study was to optimize radionuclide therapy of mCRPC through the development of albumin-binding PSMA ligands with...
Understanding the coordination chemistry of the heavy group 2 metal chemistry, especially of barium as surrogate for radium, is mandatory not only for adiopharmaceutical applications of radium. This is from high importance since Radium-223 is the only approved therapeutic alpha-emitter (by EMA and FDA). Unfortunately, the applications are limited. To date, radium-223 is only in use as...
Monocarboxylate transporter 1 (MCT1) is an integral plasma membrane protein that bi-directionally transports lactate and ketone bodies and is highly expressed in non-hypoxic regions of human colon, brain, breast, lung and other tumors. Accordingly, MCT1 inhibitors are regarded to be of potential clinical use. In the current study we developed a new 18F-labeled radioligand for in vivo imaging...
Alpha radionuclide therapy (ART) is a very powerful tool for the treatment of small tumour metastases. Due to their short range and high LET, alpha particles are much more efficient at killing cells than the commonly used beta radiation. Furthermore, their short range stops them from destroying neighbouring healthy cells. One of the main problems which still needs to be solved before ART can...
The radionuclides employed in targeted alpha therapy are often actinides (e.g. 225Ac, 227Th) with multiple radioactive daughters. Successful treatment relies on the radiopharmaceutical’s ability to “hold-on” to 225Ac (or 227Th) while it is delivered to the target cancer cell. Imaging surrogates of the radiopharmaceutical permit non-invasive pharmacokinetic assays and enable rapid screening of...
Introduction: 119Sb is one of the most potent radionuclides for Targeted Auger Therapy due to convenient energy and numbers of Auger electrons as well absence of any other accompanying emissions [1-3]. Antimony-119 has a half-life of 38.5 hours which is well suited for radiotherapeutic application. In the present work: production, radiochemical separation and chelation preference of...