Speaker
Description
The discovery of long-lived isotopes of superheavy elements (SHEs) in nuclear fusion reactions of
Gas thermochromatography on gold is a unique method of chemical detection of SHEs. The corresponding experiments, however, are extremely sophisticated and expensive and produce very scarce data on the chemical properties of SHEs. Moreover, the correct and detailed interpretation of the available experimental data cannot be performed without preliminary theoretical modeling. The main effort of our research is focused on the description of the SHEs atoms/molecules adsorption on a gold surface from first principles – a key component for quantitative theoretical predictions. The desorption energies of SHEs on a gold surface are estimated using the cluster model. To simulate the electronic structure of such systems, we combine accurate shape-consistent relativistic pseudopotentials and non-collinear two-component relativistic density functional theory. As in important result of such modeling, we recommend estimates of the Nh desorption energies on gold – 110 kJ/mol.
Strong relativistic effects suggest dramatic dissimilarities in the chemical behavior of SHEs and their formal lighter homologues. The calculated adsorption energy for single atoms of nihonium on a gold surface differs substantially from the experimentally measured adsorption energy on gold of its nearest homolog, thallium. This casts doubt on the usefulness of the experiments with Nh formal homologues for understanding its chemistry. Despite manifest deviations of the chemical properties of the SHEs from the trends observed in their lighter formal homologues in the respective groups of the periodic table, finding chemical pseudo-homologues appears a practically meaningful issue.
It has been shown experimentally that the desorption temperatures and energies of Cn and Fl atoms from a gold surface are fairy close to each other and overall lower than those of their immediate homologs Hg and Pb, observed on the same surface. This confirms theoretical predictions concerning the electronic structure of Cn and Fl atoms: the strong relativistic stabilization of the s and p1/2 shells in both Cn (
The work was partially supported by the by the Russian Science Foundation grant No. 14-31-00022.