May 11 – 16, 2014
Casino Conference Centre
Europe/Prague timezone

COMPUTER SIMULATION OF DIFFUSION, ADSORPTION, DESORPTION, AND β - DECAY OF 89Br ON THE TUNGSTEN SURFACE

May 13, 2014, 5:15 PM
1h 30m
Casino Conference Centre

Casino Conference Centre

Reitenbergerova 4/95, Mari&#225;nsk&#233; L&#225;zn&#283;, Czech Republic <font color=white>
Poster Radiation Chemistry Poster Session - Radiation Chemistry

Speaker

Mr Andrei Androsov (russian)

Description

In course of construction of thermionic converter it is necessary to solve the problem of electrodes metal surface [1]. This paper presents the method and results of computer simulation of surface diffusion, adsorption, desorption, and β-decay of 89Br on the surface of single-crystal tungsten, in both case at the presence, and at the absence of 133Cs on it. The simulation of all the mentioned processes was carried out by solving the system of partial differential equation with the appropriate boundary and initial conditions. As a result of this simulation it was shown that: - principal amount of 89Sr hits the surface of the tungsten collector by direct adsorption from the gas phase and not at the expense of β-decay of 88Kr, 89Kr, 89Rb, 89mY and 89Y in the adsorption layer. - joint diffusion and desorption of 89Sr with the presence on the surface of 133Cs is faster than a single 89Sr. Literature 1 D.Yu. Lyubimov, I.I. Fedik, A.A. Shumilov, “Effet of fission products on the output power of thermionic EGC with communicating and separated fuel-element cavities and in interelectrode gap”, Atomic Energy, 2011, Vol. 110, № 6, p. 395-404. 2 Ya.E. Geguzin,“Diffusion by real crystal surface” in Surface diffusion and…, Nauka, Moscow, 1969, p. 11-77. 3 R.Ya. Kucherov, D.Yu. Lyubimov, L.G. Smirnov, et al., “Modeling physicochemical processes on the surface of niobium-oxygen collector in a thermionic”, Materialovedenie, 2002, № 7, p. 11-17.

Primary author

Mr Andrei Androsov (russian)

Co-author

Mr Dimitry Lyubimov (russian)

Presentation materials

There are no materials yet.