17–18 Sept 2020
Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze (FJFI ČVUT)
Europe/Prague timezone

Vortex solutions of Liouville equation and quasi spherical surfaces

18 Sept 2020, 10:15
15m
Teoretická fyzika Teoretická fyzika

Speaker

Mr Pavel Kůs (MFF UK)

Description

We identify the two-dimensional surfaces corresponding to certain solutions of the Liouville equation of importance for mathematical physics, the non-topological Chern-Simons (or Jackiw-Pi) vortex solutions, characterized by an integer N1. Such surfaces, that we call S2(N), have positive constant Gaussian curvature, K, but are spheres only when N=1. They have edges, and, for any fixed K, have maximal radius c that we find here to be c=N/K. If such surfaces are constructed in a laboratory by using graphene (or any other Dirac material), our findings could be of interest to realize table-top Dirac massless excitations on nontrivial backgrounds. We also briefly discuss the type of three-dimensional spacetimes obtained as the product S2(N)×R.

Primary author

Mr Pavel Kůs (MFF UK)

Co-author

Prof. Alfredo Iorio (MFF UK, assoc. prof. (docent), ÚJČF)

Presentation materials